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1
Introduction

This project explores the integration of Reinforcement Learning (RL) and Large Language
Models (LLMs) to enhance AI decision-making. RL enables agents to make decisions
by interacting with an environment, while LLMs process and generate natural language.
The project aims to develop innovative ways to improve reward systems in RL using the
language capabilities of LLMs, fostering more efficient and intelligent AI systems. This
research motivation is to delve into an active line of research at the intersection of RL and
LLMs, investigating innovative ways to leverage their combined power for smart sequential
decision-making and natural language understanding. The main objectives of this report
are to extend the existing Eureka Framework by integrating the SMACLite environment (an
environment similar to StarCraft II), explore if LLMs can effectively design reward functions
for more complex environments, and compare the performance of different OpenAI models,
specifically GPT-4o, GPT-4.1, o3-mini, and o4-mini on the same task to determine if newer
models truly outperform older ones. Finally, we aim to analyze the results and draw mean-
ingful conclusions. Human reward function shaping is difficult in reinforcement learning
because it requires accurately translating complex human intentions and preferences into
precise mathematical formulations. Small misalignments in the reward design can lead
agents to exploit loopholes or develop unintended behaviors. Additionally, human goals
are often context-dependent and hard to quantify, making consistent reward specification
challenging.

The report begins with background and context to explain the key technical terms and
concepts. It then describes how the experiments were implemented in Python, followed
by a walkthrough of a typical experiment. Lastly, the results are analyzed, limitations are
discussed, and potential directions for future work are suggested.

This thesis has been conducted in collaboration with Euranova. Euranova is a data
science and software engineering company that specializes in designing and building
advanced AI and data-driven solutions. It combines academic research with industrial
expertise to help businesses develop intelligent systems. Part of the code developed in this
thesis is based on a prior reimplementation of the Eureka framework by Eliot Crancée.

https://euranova.eu
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2
Background & Context

In order to understand the experiments and methods used in this thesis, it is important to
first present the necessary background and context. This chapter introduces several key
concepts and tools that form the foundation of the work. We begin with an overview of
neural networks, the core building blocks of modern artificial intelligence, which enable
models to learn complex patterns from data. Building on this foundation, we explore
LLMs, a powerful class of neural networks trained on vast amounts of text data, capable
of generating human like responses and performing a wide range of tasks. Next, we
provide an introduction to RL, a branch of machine learning where agents learn to make
decisions by interacting with an environment to maximize rewards. This is particularly
relevant to our work, as the Eureka Framework uses LLMs to assist in designing reward
functions for RL, this plays a central role in our research. We also discuss the technical tools
used throughout the project, including PyTorch, a widely used deep learning framework
that supports the implementation and training of neural networks. Furthermore, we
introduce the SMAC environment (StarCraft Multi-Agent Challenge), which serves as a
benchmark for evaluating the performance of AI agents in complex, multi-agent scenarios.
We then explore two frameworks designed to train AI agents in complex environments:
Mava and EPyMARL. These tools provide useful features and structures for building and
running multi-agent reinforcement learning (MARL) experiments, making it easier to
manage environments, agents, and training processes. Furthermore, we touch on prompt
engineering, the technique of crafting effective prompts (inputs) to guide the behavior
of LLMs, a crucial skill when leveraging these models within the Eureka Framework.
We conclude by addressing the double bias phenomenon observed in our methodology.
Together, these concepts form the theoretical and practical basis for the experiments and
analysis presented in the following chapters.
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2.1 Introduction to Neural Networks
A neural network is a computational model inspired by the structure and function of
the human brain. It is composed of layers of interconnected nodes, called neurons, which
process and transmit information.

The Perceptron [1], introduced by Frank Rosenblatt in 1957, is one of the simplest
types of artificial neural networks. It consists of a single neuron that performs binary
classification by applying a linear function followed by a step activation:

𝑦 =

{
1 if 𝐰⋅𝐱+𝑏 > 0
0 otherwise

In this model, 𝐱 represents the input vector, which contains the features or data points to
be classified. Each input is associated with a weight from the vector 𝐰, which determines
the importance of that input in the final decision. The bias term 𝑏 allows the model to shift
the decision boundary, enabling it to classify data that may not pass through the origin.
The Perceptron computes a weighted sum of the inputs plus the bias, and the output is 1
if this sum is greater than zero, and 0 otherwise. The Perceptron can only solve linearly
separable problems.

To overcome this limitation, the Multilayer Perceptron (MLP) [2] was developed.
An MLP is a type of feedforward neural network that includes one or more hidden layers of
neurons, enabling it to model complex, non-linear relationships. Mathematically, a simple
feedforward neural network with one hidden layer can be described as follows:

Input: 𝐱 ∈ ℝ𝑛

Hidden layer: 𝐡 = 𝜎(𝐖1𝐱+𝐛1)
Output layer: 𝐲 = 𝜙(𝐖2𝐡+𝐛2)

Here:

• 𝐱 is the input vector,

• 𝐖1,𝐖2 are weight matrices,

• 𝐛1, 𝐛2 are bias vectors,

• 𝜎 is an activation function (e.g., ReLU, sigmoid),

• 𝜙 is the output activation function (e.g., softmax for classification).

Neural networks are trained using algorithms like backpropagation [3] combined with
optimization techniques such as gradient descent [4] tominimize a loss function and improve
performance on a given task. When these networks are extended to include many layers,
the approach is known as Deep learning [5], which can learn hierarchical representations
of data and achieve state-of-the-art results in tasks such as image recognition, natural
language processing, and more.
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2.2 Large Language Model (LLM)
LLMs [6] are advanced AI systems trained on vast amounts of text data to understand and
generate human-like language. They can perform a range of tasks, including answering
questions, generating content, translating languages, and even writing code. LLMs, such as
GPT [7] or LlaMA [8], leverage deep learning techniques to capture patterns in language,
enabling them to provide contextually relevant and coherent responses.

LLMs can be seen as advanced forms of neural networks, specifically transformer-
based architectures. They are designed to process and generate human-like text by modeling
the probability distribution of sequences of words.

At their core, LLMs consist of multiple layers of transformer blocks, which include:

• Multi-head self-attention mechanisms [9] that allow the model to weigh the
importance of different words in a sequence.

• Feedforward neural networks applied to each position independently.

• Layer normalization and residual connections to stabilize training and improve
gradient flow.

The model learns to map input token embeddings to output probabilities using param-
eters 𝜃 trained on massive text corpora:

𝑃(𝑤1,𝑤2,… ,𝑤𝑛) ≈
𝑛

∏
𝑡=1

𝑃(𝑤𝑡 ∣ 𝑤1,… ,𝑤𝑡−1;𝜃)

This is the equation used to approximate the probability of a sequence of words in a
language model. 𝑃(𝑤1,𝑤2,… ,𝑤𝑛) represents the probability of the entire sequence of
words from 𝑤1 to 𝑤𝑛. ∏𝑛

𝑡=1 indicates that we are multiplying the probabilities for each
word in the sequence, from the first word 𝑡 = 1 to the last word 𝑡 = 𝑛. 𝑃(𝑤𝑡 ∣ 𝑤1,… ,𝑤𝑡−1;𝜃)
is the conditional probability of predicting the next word 𝑤𝑡 , given the previous words
𝑤1,… ,𝑤𝑡−1, and model parameters 𝜃. 𝑤1,… ,𝑤𝑡−1 represents the context or the previous
words in the sequence that are used to predict the next word 𝑤𝑡 . In practice, models
maximize the log-likelihood of this equation to make the best predictions.

2.3 Introduction To Reinforcement Learning
Reinforcement Learning (RL) [10] is a branch of Machine Learning where an agent learns
to make decision by interacting with an environment, receiving rewards or penalties based
on its actions. RL has been applied to a wide range of areas, including smart energy man-
agement and robotics. It has even achieved superhuman performance in complex strategy
games like Go [11] and StarCraft II [12] . However, despite these remarkable achievements,
there are still significant challenges to overcome before RL can be effectively deployed as a
versatile and reliable solution in industry.
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Here are the key components of RL:

• Environment (): The environment  is the external system with which the agent
interacts. It provides feedback in the form of rewards based on the actions taken by
the agent.

• Agent (): The agent  is the decision-making entity that interacts with the
environment, selecting actions to maximize cumulative rewards.

• State (𝑠 ∈ ): The state 𝑠 represents the current situation or configuration of the
environment. The set of all possible states is denoted as  .

• Action (𝑎 ∈(𝑠)): The action 𝑎 is a decision made by the agent based on the current
state 𝑠. The set of all possible actions the agent can take from a given state is denoted
by (𝑠).

• Policy (𝜋(𝑎|𝑠)): The policy 𝜋(𝑎|𝑠) defines the agent’s behavior, mapping each state
𝑠 to the probability of taking an action 𝑎. In deterministic policies, this is simplified
to 𝜋(𝑠) = 𝑎.

• Reward (𝑟 ∈ ℝ): The reward 𝑟(𝑠,𝑎, 𝑠′) is the immediate feedback given to the agent
after transitioning from state 𝑠 to state 𝑠′ by taking action 𝑎. It evaluates how
favorable the action was.

• Value Function (𝑉 (𝑠)): The value function 𝑉 (𝑠) estimates the expected cumulative
reward the agent can achieve from state 𝑠 by following the policy 𝜋.

• Action-Value Function (𝑄(𝑠,𝑎)): The action-value function 𝑄(𝑠,𝑎) estimates the
expected cumulative reward after taking action 𝑎 in state 𝑠 and then following policy
𝜋.

What truly interests us in this thesis is the reward, which typically takes the form of a
programming function in practice. Our goal is to generate these reward functions using a
LLM.

2.3.1 More about Reward Function
In RL, the reward function is a central component that guides the learning process of an
agent. It defines the goal of the agent by assigning a scalar value (reward) to each state or
state-action pair, which reflects the desirability of that outcome. The agent’s objective is to
learn a policy that maximizes the expected cumulative reward over time.

Definition and Function
Formally, the reward function is typically denoted as:

𝑅 ∶  ×→ℝ

where  is the set of states,  is the set of actions, and 𝑅(𝑠,𝑎) gives the immediate reward
received after taking action 𝑎 in state 𝑠.

The reward signal serves multiple purposes:
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• Guidance: It provides feedback to the agent about the quality of its actions.

• Learning Objective: It defines what the agent should strive to achieve, shaping the
agent’s behavior through trial and error.

• Evaluation: It is used to evaluate the performance of a policy during training and
testing.

Impact on Learning and Performance
The design of the reward function significantly impacts the efficiency and effectiveness of
learning:

• Sparse vs. Dense Rewards: Sparse rewards provide feedback only in specific situa-
tions (e.g., at the end of an episode), which can slow down learning. Dense rewards
give frequent feedback, helping the agent learn faster but possibly encouraging
unintended behaviors.

• Reward Shaping: Carefully crafting intermediate rewards (reward shaping) can
accelerate learning by guiding the agent through subgoals. However, poor reward
shaping can lead to suboptimal policies or unintended shortcuts.

• Exploration vs. Exploitation: The nature of the reward influences the agent’s
balance between exploring new actions and exploiting known ones. Misaligned
rewards can cause premature convergence or poor generalization.

Challenges in Reward Design
Designing an effective reward function is one of the most challenging aspects of RL. It often
requires domain knowledge and iterative testing. In complex environments, specifying
a reward function that aligns perfectly with the desired behavior is difficult. Misaligned
rewards can result in behaviors that technically maximize the reward but do not solve the
intended task (see Reward hacking).

2.3.2 Multi Agent Reinforcement Learning
Another form of RL is Multi-agent Reinforcement Learning (MARL) [13], which involves
multiple agents interacting within a shared environment. In MARL, agents learn not only
from their own experiences but also from the actions and behaviors of other agents, making
the learning process more complex and dynamic. Each agent aims to optimize its own
reward, which may lead to cooperative, competitive, or mixed strategies depending on the
environment and task. MARL is especially useful in domains like autonomous driving,
robotics, and distributed systems, where multiple entities must work together or compete
together. More recent research also shown how to use such technologies with LLMs [14].

2.3.3 Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) [15] is a RL algorithm that improves policy gradient
methods. PPO is widely used in the RL domain. It has been shown to perform well in
gaming-related tasks like with Atari-games or Dota 2. In the next section, we will take a
closer look at the steps of the PPO algorithm to understand how it works and what it does.

https://openai.com/index/openai-five/
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Algorithm Steps
A simplified version of the PPO algorithm follows the steps outlined below:

1. The agent, typically a neural network, initializes a policy that determines the proba-
bility distribution of actions.

2. The agent interacts with the environment and collects a trajectory:

𝑇 = {(𝑠𝑡 , 𝑎𝑡 ,𝑦′𝑎(𝑠𝑡), 𝑟𝑡) | 1 ≤ 𝑡 ≤ 𝑀}, (2.1)

where 𝑠𝑡 is the state at time 𝑡, 𝑎𝑡 is the action taken at time 𝑡, 𝑦′𝑎(𝑠𝑡) is the probability
of taking action 𝑎𝑡 given state 𝑠𝑡 under the current policy, and 𝑟𝑡 is the received
reward at time 𝑡.

3. The advantage function 𝐺𝑡 is computed using the value function 𝑣(𝑠𝑡), estimated by
a neural network:

𝐺𝑡 = 𝑟𝑡 +𝛾𝑟𝑡+1+𝛾 2𝑟𝑡+2+⋯+𝛾𝑁 𝑟𝑡+𝑁 −𝑣(𝑠𝑡), (2.2)

where 𝑟𝑡 is the reward at time 𝑡, 𝛾 is the discount factor, which determines how much
future rewards are valued compared to immediate rewards, and 𝑣(𝑠𝑡) is the value
function estimate of the state 𝑠𝑡 . The sum represents the expected future rewards
from time 𝑡 to time 𝑡 +𝑁 .

4. Using the temporal difference error 𝛿𝑡 :

𝛿𝑡 = (𝑟𝑡 +𝛾𝑣(𝑠𝑡+1)− 𝑣(𝑠𝑡)), (2.3)

and a smoothing factor 𝜆, the advantage function is refined as:

𝐺𝑡 = 𝛿𝑡 +𝛾𝜆𝛿𝑡+1+(𝛾𝜆)2𝛿𝑡+2+⋯+(𝛾𝜆)𝑁𝛿𝑡+𝑁 , (2.4)

where 𝛿𝑡 represents the temporal difference error at time 𝑡, which indicates the
difference between the predicted value and the actual reward, and 𝜆 is a smoothing
factor that controls the bias-variance tradeoff in advantage estimation.

5. The return in each step is computed as:

𝑅𝑡 = 𝐺𝑡 +𝑣(𝑠𝑡), (2.5)

where 𝐺𝑡 is the advantage function, representing the expected return from time step
𝑡, and 𝑣(𝑠𝑡) is the value of the state at time 𝑡. 𝑅𝑡 represents the return or cumulative
reward at time 𝑡, which is the total reward from the current state.

6. The policy network is updated by maximizing the following objective function:

𝐽 (𝜃) = 𝐽1(𝜃)+ 𝐽2(𝜃)+ 𝐽3(𝜃), (2.6)

where 𝐽 (𝜃) is the total objective function that guides the policy update. The compo-
nents of the objective function are:
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• The first term, 𝐽1(𝜃), is the clipped surrogate function for the policy update. The
probability ratio 𝑝𝑡(𝜃) = 𝑦𝑎(𝑠𝑡 )

𝑦′𝑎(𝑠𝑡 )
compares the current policy’s action probabilities

(𝑦𝑎(𝑠𝑡)) with the old policy’s action probabilities (𝑦′𝑎(𝑠𝑡)). The clipped surrogate
function is given by:

𝐽1(𝜃) = min(𝑝𝑡(𝜃)𝐺𝑡 ,clip(𝑝𝑡(𝜃),1−𝜖,1+𝜖)𝐺𝑡), (2.7)

where 𝜖 is a small constant that ensures small updates, and the clip function
ensures that updates stay within a bounded range to prevent excessively large
policy updates.

• The second term, 𝐽2(𝜃), is the value network loss function:

𝐽2(𝜃) = −𝐶1(𝑣(𝑠𝑡)−𝑅𝑡)2, (2.8)

where 𝐶1 is a constant that controls the strength of the value network update,
𝑣(𝑠𝑡) is the value function estimate at time 𝑡, and 𝑅𝑡 is the return computed in
the previous step.

• The third term, 𝐽3(𝜃), is an entropy bonus to encourage exploration:

𝐽3(𝜃) = −𝐶2∑
𝑘
𝑦𝑘(𝑠𝑡) log(𝑦𝑘(𝑠𝑡)), (2.9)

where 𝑦𝑘(𝑠𝑡) is the probability distribution over actions for each action 𝑘 at
state 𝑠𝑡 , and 𝐶2 is a constant that controls the strength of the entropy bonus.
This term encourages exploration by penalizing deterministic policies that do
not explore all possible actions.

7. Gradient descent (or stochastic gradient descent in practice) is applied to optimize
the policy parameters 𝜃.

In summary, here are the key steps:

1. The agent initializes a policy 𝜋𝜃(𝑎|𝑠), typically parameterized by a neural network,
to generate actions based on observed states.

2. The agent interacts with the environment and collects a trajectory.

3. Compute the advantage 𝐺𝑡 using the value function 𝑣(𝑠𝑡).

4. Compute the return at each step.

5. Maximize the total objective.

6. Apply (stochastic) gradient descent to maximize 𝐽 (𝜃) and update the policy parame-
ters 𝜃.
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Multi-agent Proximal Policy Optimization (MAPPO)
In this work, we need an algorithm which can handle several agents during learning
because each unit in the SMAC environment is controlled by a separate agent that must
learn to cooperate with others to complete the task effectively. MAPPO [16] is an extension
of the PPO algorithm for MARL. It is designed to handle scenarios where multiple agents
interact in a shared environment, each with its own policy while cooperating or competing
with other agents.

Independent Proximal Policy Optimization (IPPO)
Independent Proximal Policy Optimization (IPPO) is another RL algorithm, which is an
extension of PPO for multi-agent environments. Unlike MAPPO, IPPO treats each agent
independently during training. This means each agent optimizes its own policy without
taking into account the presence or actions of other agents. In IPPO, agents do not share
information about the environment or their actions. Each agent learns its policy in isolation,
assuming that the environment it interacts with does not change due to the actions of
others. This approach simplifies the learning process compared to MAPPO, but may lead
to suboptimal behavior in more complex multi-agent scenarios where agents’ actions
influence one another significantly. But this algorithm has proven its efficiency in a SMAC
environment [17], which is why we also use it in this work.

2.3.4 Podracer in RL
In RL, the term Podracer [18] refers to an environment where agents control racing vehicles,
called pods, in a competitive or time-sensitive setting. These environments are designed to
help RL agents improve their performance by constantly interacting with the environment.
The concept of Podracing from Star Wars provides an interesting example for RL tasks,
where agents (or racers) compete to achieve the fastest time or position, often racing
through challenging tracks while avoiding obstacles. This concept is essential for this work,
as we use the Podracer architecture (Sebulba) in combination with one of our frameworks,
Mava.

Sebulba’s Architecture
The Sebulba architecture, is a more aggressive and strategic racer. He uses his environment
to his advantage, often using underhanded tactics to sabotage his competitors and maintain
his lead. In RL, Sebulba’s approach could represent an agent that focuses on a more
competitive or adversarial learning strategy. For example, Sebulba’s architecture might
involve MARL, where the agent not only works to improve its own performance but
also predicts and outsmarts other agents. Sebulba would likely focus on exploiting the
weaknesses of his competitors, using learned models of the environment to anticipate and
hinder their actions.

2.3.5 RL and Reward Hacking
In RL and especially in reward function design, it’s important to evoke the concept of Re-
ward Hacking because we might encounter it in reward function generation. The concept
is when an agent manipulates or exploits the reward system to gain benefits in ways that
were not originally intended by the designers of the system. Essentially, reward hacking
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occurs when the agent figures out how to maximize its rewards by finding shortcuts or
unintended methods that do not align with the true objective of the task. The agent learns
to make decisions by receiving rewards for its actions, with the goal of maximizing its total
reward over time. However, if the reward function is poorly designed or too simplistic, the
agent may exploit it in ways that were not intended.

A classic example of reward hacking is in a scenario where a robot is programmed
to stack blocks. If the reward function only rewards the robot based on the number of
blocks stacked, the robot could simply stack and unstack blocks repeatedly to maximize its
reward, instead of building a stable, well-constructed tower. In this case, the agent learned
to "hack" the system by taking advantage of the reward structure without achieving the
desired outcome.

This problem is linked with the Alignment Problem which refers to the challenge
of ensuring that an AI system goals, behaviors and actions align with human values and
intentions. The core issue is making sure that the AI system does what we actually want it
to do, not just what it interprets the instructions to mean based on its reward function.

2.4 Eureka Framework
EUREKA [19] is a framework that aligns closely with the goals of this thesis. It leverages
OpenAI’s well-known LLM (GPT) to automatically generate reward functions for RL tasks.
Their experiments were conducted in a specific environment where the objective was to
train a robotic hand to master pen spinning.

Their code can be found at the following link: Eureka GitHub Repository
EUREKA consists of three key algorithmic components designed to generate and

improve reward functions in RL environments:

• Environment as Context: EUREKA uses the environment as context, instructing
a coding LLM to generate executable Python code with minimal reward design
guidelines. These include generic tips such as exposing reward components as a
dictionary output. Even with these minimal instructions, EUREKA can generate
plausible rewards in various environments without environment-specific prompt
engineering.

• Evolutionary Search: To address execution errors and sub optimality in the gener-
ated rewards, EUREKA employs an evolutionary search. It samples multiple outputs
from the LLM , with the probability of generating an executable reward increasing as
more samples are drawn. The search iterates by refining the best-performing reward,
using mutation prompts to generate improved versions over several iterations. In
all experiments, EUREKA performs 5 independent runs per environment, with each
run conducting 5 iterations and generating 16 samples per iteration.

• Reward Reflection: EUREKA incorporates reward reflection, which tracks and
evaluates the performance of individual reward components throughout training. By
analyzing intermediate training checkpoints, EUREKA can provide detailed feedback
that guides more targeted reward improvements. This process helps overcome the

https://github.com/eureka-research/Eureka
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lack of fine-grained feedback from task fitness functions and the algorithm-dependent
nature of reward optimization.

Refer to Figure 2.1 for the pseudo code, which outlines the evolutionary search process.
The init prompt used is provided in Figure 2.2, and an example of EUREKA’s generated
output after reward reflection is shown in Figure 2.3.

Figure 2.1: Eureka Algorithm.

Figure 2.2: Eureka Initial prompt.
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Figure 2.3: EUREKA is capable of zero-shot generating executable reward functions and can iteratively refine
them through various types of flexible, free form modifications including (1) adjusting hyperparameters of
existing components, (2) altering their functional structure and (3) adding entirely new reward components.
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The agent’s task is to keep a pole
balanced upright on a moving cart by

applying left or right forces to the
cart. The goal is to prevent the pole

from tipping over or the cart from
moving too far off-center for as long

as possible.

We trained a RL policy using the
provided reward function code and
tracked the values of the individual
components in the reward function
as well as global policy metrics
such as success rates and episode
lengths after every 300 epochs and
the maximum, mean, minimum
values encountered: upright_reward:
[’0.03’, ’0.31’, ’0.30’, ’0.32’, ’0.34’,
’0.34’, ’0.34’, ’0.34’, ’0.34’, ’ 0.32’],
Max: 0.36, Mean: 0.32, Min: 0.03
Please carefully analyze the policy
feedback and provide a new,
improved reward function (...)

AGENT

Environment

Reward r

Reward Function

Environment

Task

Reflection
Refined Reward

Function

State s

t

t

t+1r

action a   t

# Here is a function that compute
a reward for the Cartpole
Environment generated by the LLM:
def compute_reward(observations)
# Reward for keeping the pole
upright 
upright_reward = ... 
(...)
return upright_reward 

LLM 

### Action Space
The action is a `ndarray` with shape `(1,)` which
can take values `{0, 1}` indicating the direction
of the fixed force the cart is pushed with.
    | Num | Action                |
    |---- |---------------------  |
    | 0   | Push cart to the left|
    | 1   | Push cart to the right|

### Observation Space
    The observation is a `ndarray` with shape `(4,)`
with the values corresponding to the following
positions and velocities:
    | Num | Observation           | Min               | Max               
    |-----|-----------------------  |----------------|--------
    | 0   | Cart Position             | -4.8             | 4.8          
    | 1   | Cart Velocity             | -Inf              | Inf          
    | 2   | Pole Angle                | -24°             | 24°        
    | 3   | Pole Angular Velocity | -Inf              | Inf          

t+1s

Environment Code Reward Reflection RL Training

Task Description

Reward Function

(...)

Figure 2.4: Eureka Concept Scheme.

Figure 2.4 provides a good summary of the Eureka concept. It illustrates how the Eu-
reka process works using the CartPole environment. In this simple environment, the
goal is to keep a pole upright by moving left or right. For more details about it, visit this link.

This diagram represents the flow of an Eureka experiment. The LLM box positioned in
the center-bottom area, identifiable by the black-corner marker symbolizes the interaction
with the LLM. The process begins by providing the environment and task description to
the LLM, so it understands where and how the reward function will be applied. Based on
this information, the LLM generates an initial reward function (highlighted in red in the
diagram).

This function is then used in RL training (blue section), where the agent learns to
complete the task by interacting with the environment. During training, various perfor-
mance metrics related to the reward are tracked. These metrics are essential for the reward
reflection process (part in purple), which helps the LLM refine its response based on the
previous iteration. The updated reward function should improve learning efficiency and
task performance and solve potential previous errors.

This cycle is repeated for as many iterations as desired. However, training RL models is
computationally expensive and requires tuning many parameters, so, in practice, we limit

https://www.gymlibrary.dev/environments/classic_control/cart_pole/
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the number of iterations to keep the process manageable.

2.5 PyTorch
PyTorch[20] is one of the technologies used by the Eureka framework. PyTorch is an open
source machine learning library that is used to build and train neural networks. It allows
developers and researchers to easily create deep learning models by providing flexible
tools to handle data, define models, and run them efficiently on both CPUs and GPUs.
PyTorch is primarily available in Python. It is widely used because of its simplicity, dynamic
computation graphs (which allow for easy debugging), and strong support for tasks like
image recognition, natural language processing and RL.

2.6 SMAC
The StarCraft Multi-Agent Challenge [21] (SMAC) is a benchmark framework designed
to test and evaluate the performance of MARL algorithms in the real-time strategy game
StarCraft II. It focuses on decentralized control, where each unit in a team acts independently
based on local observations to achieve a shared goal, such as defeating an opponent team.
The SMAC environment presents complex challenges in coordination, strategy, and decision
making, making it a popular testbed for advancing MARL research. Figure 2.5 presents an
example scenario within a SMAC environment in StarCraft II.

Figure 2.5: SMAC Environment Visualization Example.

2.6.1 PyMARL
PyMARL is a toolkit for training and testing different teamwork algorithms with SMAC.
SMAC is all about teaching multiple units in StarCraft II to work together without needing
a central controller. PyMARL connects easily with SMAC, letting researchers quickly try
out new strategies and see how well different approaches help these units work as a team
in a game. You can access the PyMARL website: https://github.com/oxwhirl/pymarl.
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2.6.2 EPyMARL
EPyMARL is an extended version of PyMARL, aimed at improving modularity, scalability,
and functionality. It introduces support for a broader set of environments, algorithms, and
configurations, addressing some of the limitations of the original framework. It is mainly
used in this work and has been in others [22]. You can learn more about it here.

2.6.3 Mava
Mava [23] is a research framework for training MARL agents, similar to EPyMARL and
PyMARL. Developed by Instadeep, Mava is built on top of Acme (by DeepMind) and is
designed to support scalable and reproducible MARL experiments. In this work, Mava
has been used to run and manage experimental setups for training and evaluating MARL
agents.

2.6.4 SMAClite
SMACLite is a lightweight variant of SMAC [24], designed to simplify the testing and
benchmarking of MARL algorithms. While SMAC is built on top of the full StarCraft
II engine and involves complex cooperative tasks, SMACLite significantly reduces the
computational and resource overhead by abstracting the StarCraft II environment into a
simpler, grid-based framework. Both Mava and EPyMARL allow to train agents in this
environment.

Default Reward
SMACLite comes with a default reward function, designed by humans to train agents
within this environment. This built-in reward will serve as the baseline for comparing the
performance of the LLM-based reward function.

The default reward function operates as follows: After each time step, all agents receive
a shared reward based on the amount of health and shield points they remove from enemy
units. They also get a small bonus of 10 points for every enemy they eliminate and a larger
bonus of 200 points for winning the scenario. To keep the scale consistent, the total reward
is normalized by dividing it by the maximum possible damage and bonuses, then multiplied
by 20. This keeps most rewards between 0 and 20. However, due to health and shield
regeneration during episodes, the final cumulative reward can sometimes go beyond 20.

The default reward in SMAClite encourages agents to learn aggressive and efficient
combat behavior. Because they receive rewards for reducing enemy health and shield, the
agents are driven to actively engage and consistently inflict damage rather than remain pas-
sive. The additional bonus for eliminating enemies teaches them to prioritize finishing off
weakened opponents, promoting focused attacks instead of spreading damage across mul-
tiple targets. Moreover, the large bonus granted for winning the scenario motivates agents
to act strategically and cooperatively to ensure overall success, not just individual combat
performance. As a result, agents learn to balance damage output, target prioritization, and
survival in order to consistently win combats.

https://github.com/uoe-agents/epymarl
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Observation Space
At every time step, each agent receives an observation of what it perceives in the environ-
ment. SMACLite uses a fixed sight range, if another unit is too far away or already dead,
the agent gets no information about it (this data is represented as zeros).

The observation vector is divided into four parts:

• Movement information: Indicates whether the agent can move in each of the four
cardinal directions (up, down, left, right).

• Enemy information: For each enemy unit, the agent receives information on
whether the unit is alive, if it can be attacked, its distance and relative position (X
and Y coordinates), its health, shields (if applicable), and a one-hot encoded vector
representing its unit type (if applicable).

• Ally information: Similar to the enemy section, the agent receives data for each
teammate, including whether they are visible (a value of 1), their distance, relative
position, health, shields (if applicable), and unit type (if applicable).

• Self information: This includes the agent’s own health, shields (if applicable), and
its unit type (if applicable).

All values in the observation vector are normalized to fall within the range [0,1], similar to
the state features. The shield is applicable if at least one unit has shield, and unit type is
applicable if the scenario contains different type of units (zergs and marines for example).

Example:
Let’s take a simple scenario where we have 4 marines (allies) against 3 marines (enemies),
none of the units have shield and there is only marines. This is a quite easy scenario. The
full observation for this unit would be like this:

[1, 0, 1, 1, # Movement information
1, 0.5, 0.1, -0.3, 0.8, # Enemy 1
1, 0.7, -0.2, 0.1, 0.6, # Enemy 2
0, 0, 0, 0, 0 # Enemy 3 (dead or out of range)
1, 0.3, 0.5, -0.2, 0.9, # Ally 1
1, 0.2, -0.1, 0.4, 1.0, # Ally 2
0, 0, 0, 0, 0 # Ally 3 (dead or out of range)
0.75] # Own Health

The information we can extract from this example is:

• The agent can move up, left, and right, but not down.

• The first enemy is attackable. He is at a normalized distance of 0.5 from the agent,
with a position of (𝑥 = 0.1, 𝑦 = −0.3) and a health value of 0.8.

• The second enemy is also attackable. He is at a normalized distance of 0.7 from the
agent, with a position of (𝑥 = −0.2, 𝑦 = 0.1) and a health value of 0.6.

• The third enemy is either dead or out of range.



2.6 SMAC

2

17

• The first ally is alive and within range. He is at a normalized distance of 0.3, located
at (𝑥 = 0.5, 𝑦 = −0.2), with a health value of 0.9.

• The second ally is alive and within range. He is at a normalized distance of 0.2,
located at (𝑥 = −0.1, 𝑦 = 0.4), with a health value of 1.0.

• The third ally is either dead or out of range.

• The health of the current agent is 0.75.

This example corresponds to the observation of a single agent. In practice, the full
observation includes the states of all allied agents. In our case, the observation consists of
a list of 4 elements, as there are 4 allied agents in total.

Action Space
Each agent in SMACLite has a set of possible actions it can take, but not all actions are
available at every time step. The environment provides a method to check which actions
are currently valid for each agent. If an agent tries to perform an invalid action, the
environment throws an error and stops the simulation.

The available actions include:

• no-op: Does nothing and is only available for dead units.

• stop: Tells the unit to stop and stay in place.

• moveN, moveE, moveS, moveW: Commands the unit to move north, east, south,
or west.

• target1, target2, . . . : Tells the agent to target a specific unit based on its team-
specific ID. For attacking units, this means attacking an enemy. For healing units, it
means healing an ally.

Agents can only target units that are within a fixed range defined by SMACLite. If a
target is outside this range, the targeting action becomes unavailable.

Example:
If we keep the same scenario as before (4 marines VS 3 marines), the action space looks
like this:

0 ==> NO-OP (Only for dead units)
1 ==> STOP
2 ==> MOVE_NORTH
3 ==> MOVE_SOUTH
4 ==> MOVE_EAST
5 ==> MOVE_WEST
6 ==> ATTACK enemy 0
7 ==> ATTACK enemy 1
8 ==> ATTACK enemy 2
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Figure 2.6: SMAClite Environment Visualization.

The image above shows a visualization of the SMAClite environment in a more complex
scenario than the one described earlier (4vs3). The green circles represent allied units, and
the red ones represent opponents. Each unit has an acronym indicating its type: mrn for
marine, mrd for marauder, and mdv for medivac. The size of each circle is proportional to
the unit’s size in StarCraft II.

The number below each unit shows its health + shield, while the number above rep-
resents the unit’s cooldown. The Cooldown is the time a unit must wait after attacking
before it can attack again it reflects a realistic attack speed.

2.7 Prompt Engineering
In this work, prompt engineering is very important because the performance of LLMs
heavily depends on how the input is formulated. Well-designed prompts can guide the
model to produce more accurate, relevant, and coherent responses. On the other hand,
wrong prompts can mislead the LLM answers. In RL or decision-making settings, effective
prompting helps the model better understand the environment, task objectives, or desired
behavior, ultimately improving learning outcomes and agent performance. For this reason,
we will see in this section what prompt engineering consist of and how it is applied to
Eureka prompts. The source of this knowledge comes from Prompt Engineer in Medical
Education [25].

What is Prompt Engineering?
Prompt engineering is the process of designing inputs (called prompts) that help artificial
intelligence (AI) models, such as chatbots or virtual assistants, provide the best possible
responses.

Types of Prompts
Prompts can be designed in different ways depending on how much guidance is provided:
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1. Zero-shot Prompts: These prompts provide no examples, relying entirely on the
AI’s pre-existing knowledge. For instance, asking, “Describe the importance of
photosynthesis” without offering additional guidance.

2. Few-shot Prompts: These prompts include examples to guide the AI’s response.
For example, “Here is an example of a simple explanation of a biological process:
[example]. Now, describe the importance of photosynthesis.”

Prompting Levels
Prompts can be designed with varying levels of detail to improve the quality of responses:

1. Level 1: Simple questions, such as “What is machine learning?”

2. Level 2: Add more context or role-playing, such as, “You are a professor. Explain
machine learning to a group of high school students.”

3. Level 3: Include examples or specific styles, for example, “Here is a lecture slide I
found helpful. Explain machine learning in a similar way.”

4. Level 4: Encourage step-by-step problem solving, like asking the AI to “Explain the
steps involved in training a machine learning model step by step.”

Structured Prompts
The best results come when prompts include:

• A description of who is asking the question or their context (e.g., “I am a software
engineer exploring reinforcement learning concepts”).

• A clear task description (e.g., “Explain the purpose of reward functions in reinforce-
ment learning.”).

• A role for the AI (e.g., “Act as an experienced AI researcher with expertise in rein-
forcement learning.”).

• Specific instructions for the response (e.g., “Provide a concise explanation in no more
than 150 words, using simple language suitable for beginners”).

Iterative Prompts
Sometimes, the best prompt is created in steps. You can give the AI feedback on its responses
to refine your original prompt. This back-and-forth process is called iterative prompting.

What are Bad Prompts?
Not all prompts work well. Here are examples of common problems:

• Vague Prompts: Questions like “What is the universe?” or "What is the meaning of
life?" are too broad and can lead to unclear or unhelpful responses.

• Overly Complex Prompts: Combining multiple queries, such as “Explain climate
change and list all solutions for renewable energy,” may overwhelm the AI and reduce
response quality.
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• Logical or Math Puzzles: Tasks like solving detailed math problems can result in
errors unless guidance is provided, such as “Break down the solution step by step.”

• Fake References: AI may invent citations or references, so it is important to validate
any sources included in its responses.

2.7.1 Application to Eureka
In Eureka we can clearly see that some prompt Engineering techniques are used to improve
the response of the LLM. Let’s take the example of the Initial prompt from the figure 2.3:

• The prompt clearly defines the goal of designing a reward function to help a RL
agent learn a task effectively, providing context that guides implementation.

• Adherence to @torch.jit.script ensures compatibility and precision by
enforcing computational constraints, avoiding vague or ambiguous instructions.

• The clear function signature promotes iterative refinement, enabling gradual im-
provement in achieving an optimal reward function for RL tasks.

Figure 2.7: Eureka Code Formatting tip prompt.

This prompt effectively demonstrates the principles of clear and structured design. It
specifies a well-defined output format, emphasizes normalization for consistent reward
scaling. By limiting inputs to environment-specific variables and ensuring correct type
specifications, it fosters compatibility and minimizes errors.
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Figure 2.8: Eureka Reward reflection and feedback prompt.

We can see that this prompt exploits the concept of iterative prompting. It provides the
LLM with feedback about how well its rewards perform during training, asks it to analyze
the tracked metrics, and adapt its code accordingly. By doing so, we obtain a refined reward
function.

2.8 Double Bias
The approach we use in this work introduce a double bias:

The First [26] is when we write prompt to the LLM we introduce Bias into the answer
of the LLM. The language and structure of the prompt we provide to the LLM will influence
the kind of answers it generates. For example, if we use a LLM to generate reward function
(just like we did in this work), if our prompt suggests that the reward function should
prioritize efficiency, fairness, or some other specific value, the LLM may "bias" its output
toward that idea, even if that wasn’t the most appropriate reward structure for the task.

The Second [27] comes from the Reward Function to the RL agent. Once we have a
reward function created (either by the LLM or manually), this function directly influences
the behavior of the RL agent. The reward function bias can then lead to the agent optimizing
for the wrong goal, this the Reward Hacking concept explained earlier.

One thing in the eureka process that helps reduce these biases is using iterative prompts,
where we ask the model to refine its answers. This approach can help mitigate bias because
it allows us to adjust and improve the reward function over time, ensuring it better aligns
with the true goal and reducing the chances of unintended results. However it is important
to keep in mind that those bias are present.
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3
Eureka Implementation

In this chapter, we describe how the Eureka codebase, originally developed by Eliot
Crancée, has been adapted to facilitate our goal of testing LLM-generated reward functions
within the SMAClite environment using the Eureka process. These modifications are driven
by the goal of achieving our objectives and, while not central to the fundamental concepts
of the thesis, they provide insight into the low-level processes behind each experiment.
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3.1 Prompts
One of the first steps is to modify the prompts given to the LLM. These prompts must be
carefully crafted based on the concepts of Prompt Engineering discussed earlier, in order
to enhance the efficiency of the LLM when performing the task. The prompts are based on
the one from Eureka.

Most of the prompts can be kept the same for the task of generating a reward func-
tion since they are quite generic. For example, error feedback or initial system prompts
can remain unchanged. On the other hand, we need prompts to describe the SMAClite
environment with the new observation and action space to the LLM and also a new task
description which changed according to the specific task.
The Environment Description needs to explain:

1. How is structured the observations manipulated in the SMAClite Environment

2. What are the possible actions an agent can take in the Environment

3. How an episode might ends

All this information is contained in the env_desc.txt file and given to the LLM so that it can
understand the task we ask it to do. The point 1 and 2 consist of explaining the observation
space and action space described earlier. The prompts for the experiments can be found in
the appendices

An episode terminates when one of the following conditions is met:

• All Enemies are Defeated.

• All Allied Units are Defeated

• Time Limit exceeds (max step reached).

3.2 Mava and EPyMARL Modifications
One of the key modifications required for the SMAClite Environment is the ability to
use a custom reward function instead of the default one. To achieve this, the SMAClite
Wrapper classes have been modified accordingly both in Mava and ePyMARL. Additionally,
it was necessary to adapt those classes to track reward components, allowing the reward
reflection of Eureka to work properly. Furthermore, for ePyMARL, changes were made to
allow the recording of specific episodes when needed.

For ePyMARL, the RL training process remains largely the same, but with some modifi-
cations. An early stopping mechanism has been implemented to reduce training time and
computational cost. Since RL training is time intensive and the Eureka framework requires
extensive training, continuing a learning process that is unlikely to yield good results is
inefficient. To address this, the early stopping mechanism was introduced to save both
time and computational resources. The idea is simple: If during training, the model fails to
achieve at least one successful episode within a given number of timesteps (learning steps),
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the training is stopped. This ensures that models with insufficient reward signals do not
continue learning unnecessarily, preventing wasted computation on unpromising policies.

For Mava, the only changes applied were within the wrapper, with no significant
modifications made to the rest of the codebase.

3.3 Important files Explanation
3.3.1 eureka.py
The provided script forms the heart of the program where the Eureka experiments are
launched and executed. It is responsible for setting up the experiment environment,
initializing the necessary configurations, running the iterations and collecting results.

Overview of the Core Workflow
The core of the Eureka experiment is implemented in the main function. The sequence of
operations can be described as follows:

• Load Configuration: The script starts by loading the YAML configuration file,
experiment_config.yaml, which contains the environment details, experi-
ence settings, and model configurations.

• Initialize Experiment: The init_experiment function is called to initialize
the directories and files required for the experiment. This function sets up directories
for prompts, environment configurations, descriptions, and the experience. If these
directories do not exist, an exception is raised.

• Load Prompts and Model: Once the experiment is initialized, the prompts and
models are loaded, as specified in the configuration.

• Run Eureka Experiment: The script then proceeds to run the Eureka experiment
through the run_eureka_experiment function. This function handles the
iterative training process, model evaluation, and rewards collection.

• Plot Results: After the experiment completes, the plot_eureka_training
function generates visualizations, such as success rate evolution and best model
performance, to summarize the experiment’s results.

Iteration and Model Selection
During the experiment, multiple iterations of the Eureka framework are performed, with
each iteration generating several samples. At the end of each iteration, the model with the
highest evaluation score (based on success rate) is selected as the best-performing model.
The experiment tracks the performance across iterations, and the results are visualized
plots as explained before.

Conclusion
In summary, this script is at the heart of the Eureka experiment, orchestrating the initial-
ization, execution and visualization of models.
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3.3.2 llm.py
This Python file is designed to load different LLM using specific configurations and API keys.
It defines functions to interact with multiple language models like Groq and GPT-models.

3.3.3 epymarl_mappo.py
This Python script is designed to train and evaluate the MAPPO model using the EpyMarl
framework in the Smaclite environment. It handles the process of training the model,
running simulations, and evaluating its performance by calculating reward components
and various statistical metrics such as mean reward, success rate, and others. Additionally,
the script supports the recording and processing of videos from the simulation, including a
slow-motion feature for further analysis of the agent’s actions. The operations in the script
are structured to facilitate multiple training iterations, evaluate the agent’s performance
across these iterations and visualize both numerical metrics and video feedback for model
analysis and improvement.

3.3.4 mava_ippo.py
This script trains an IPPO model using Mava in the SMACLite environment.the train_and
_evaluate function handles the training by calling Mava’s ff_ippo.py script with the needed
parameters. After training, it reads performance data (like win rate and average return)
from a JSON file and creates plots to visualize the results. It also analyzes reward data by
calculating statistics such as the average, standard deviation, minimum, maximum, and all
recorded values. These results are saved in a JSON file for future use with eureka.

3.3.5 experiment_config.yaml
This configuration file is used for setting up the parameters of the Eureka experiment in
the Smaclite environment. Below is a breakdown of each hyperparameter:

• env_name: Specifies the name of the environment used in the experiment. In our
case, it is set to "Smaclite" and stay fixed. (this is for further testing with different
environment)

• map_name: Defines themap to use in the experiment, it can be seen as the SMAClite
scenario.

• experience_name: Defines the name of the experiment.

• prompt_name: Indicates the name of the prompt configuration used for the LLM.
There is different possible versions of prompts available that might change according
to the environment used.

• env_description_version: Specifies the version of the environment de-
scription being used. Same as the prompts, the environment description changes
according to the map_name (scenario).

• llm: Specifies the type of large language model used in the experiment. This
parameter determines which model the system will interact with.
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• eureka_iter: Represents the number of iterations for the Eureka experiment,
which aims to fine-tune the behavior of the system using reward reflection with
feedback.

• eureka_samples: Specifies the number of samples to collect in each Eureka
iteration.

• rl_timesteps (EPyMARL): Specifies the number of timesteps for training the
RL model.

• last_model (EPyMARL): Specifies the path to the last trained model. If this
parameter is left empty, a new model will be trained from scratch.

• last_model_timesteps (EPyMARL): Defines the number of timesteps to
resume training from, in case a pre-trained model is used. A value of 0 indicates that
the model will be loaded from the latest available timesteps.

• early_stopping (EPyMARL): whether or not to use the default reward of
SMAClite.

• early_stopping_patience (EPyMARL): The maximum number of steps
allowed without any wins occurring. If this number is reached without any wins,
the training stops. This is only useful if early_stopping is true.

• use_default_reward: whether or not to use the default reward of smaclite.

• time_limit: The maximum number of steps allowed for an episode of Smaclite.

• time_interval_tracking (Mava): time interval we track the rewardmetrics
(in seconds), meaning that every x seconds we will save the reward metrics for one
episode during training.

• num_updates (Mava): number of updates for the training with mava.
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4
Experimentation

This chapter presents the experimental setup and methodology used to evaluate the effec-
tiveness of LLM reward function generation in cooperative MARL environments.

We begin by describing the overall structure of an Eureka experiment and the integration
of LLMs with RL agents. The models tested, prompt configurations, and reward refinement
process are detailed to give insight into the system pipeline. This is followed by a description
of the three SMAClite scenarios used, each representing a different level of difficulty
and complexity. We then explain our strategy for ensuring experiment stability. Special
attention is given to how specific micro-strategies (e.g., Focus Fire and Dancing) are injected
into prompts to guide the reward shaping process. The final sections detail the training and
evaluation procedures under both EPyMARL and Mava frameworks, including iterative
refinement cycles and metrics collected. This chapter ultimately provides the foundation for
the result analysis in the next chapter by laying out how data was produced and collected.
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4.1 Conduct Of an Experiment
Eureka experiments integrate RL and LLMs to enhance AI decision-making. The core idea
is to iteratively refine reward functions using LLM-generated suggestions and RL feedback.
This section details how a experiment is structured and conducted.

Experiment Setup
A Eureka experiment is configured using a YAML file that defines parameters such as
explained in the experiment_config.yml section. Before execution, necessary directories
are created, and configuration files are stored.

Loading Prompts
Prompts from predefined text files are loaded, including system instructions, reward
function descriptions, and feedback templates.

LLM Used
The Models tested in this work are the following:

• GPT-4o (gpt-4o-2024-08-06)

• GPT-4o (latest version: chatgpt-4o-latest)

• O3-mini (o3-mini-2025-01-31)

• GPT-4.1 (gpt-4.1-2025-04-14)

• O4-mini (o4-mini-2025-04-16)

The selection of models for this work is guided by the goal of comparing performance
across a representative range of recent and efficient LLMs. We include GPT-4o (gpt-
4o-2024-08-06) and its latest variant chatgpt-4o-latest due to their optimized
architecture for both speed and quality, offering state-of-the-art performance while being
highly responsive for real-time, and complex tasks. The inclusion of O3-mini (o3-
mini-2025-01-31) and O4-mini (o4-mini-2025-04-16) allows for the evaluation of more
lightweight models, which are designed to balance performance with lower computational
cost. These models are particularly valuable when considering deployment in resource-
constrained environments. Finally, GPT-4.1 (gpt-4.1-2025-04-14) is used as a strong and
stable baseline representing the evolution of OpenAI’s full-scale GPT-4 architecture. This
diverse model set enables us to assess how different generations and sizes of LLMs handle
complex tasks such as reward design and prompt-guided learning in MARL scenarios.

In this experiment, the temperature parameter is used to control the randomness and
creativity of the LLM responses. A higher temperature encourages more diverse and
exploratory outputs, while a lower temperature results in more focused and deterministic
answers. In our setup, a temperature of 0.85 is applied to non-mini models to allow for a
balance between creativity and coherence, encouraging the generation of varied reward
function designs. For the mini models, the temperature parameter cannot be customized,
as these models use fixed default settings to ensure lightweight and efficient performance.
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4.2 Experiments Description
4.2.1 SMAClite Scenarios Tested
In this work, we evaluated our approach on three different scenarios using the SMAClite
environment, each with increasing levels of difficulty and complexity. All scenarios are
limited to a single unit type: Marines and no unit has shields. This simplification reduces
the complexity of the observation space and focuses the learning task on spatial positioning
and action coordination rather than unit diversity or shield management.

The first scenario is a 4 Marines vs 3 Marines setup. This is considered an easy
scenario due to the numerical advantage of the allied agents. It serves as a baseline to
validate whether the models are capable of learning with the LLMs rewards when they
hold a clear advantage.

The second scenario is a 3 vs 3 Marines setting. Here, the battle is numerically bal-
anced, removing the advantage and presenting a slightly more challenging coordination
task.

The third and most challenging scenario is 10 Marines vs 11 Marines. In this case, the
agents are at a numerical disadvantage, and the environment features has a larger number
of units, which increases the complexity of both the observation and action spaces.

4.2.2 Experiment Repetition and Stability Considerations
To address the inherent instability of RL and the variability introduced by LLM generations,
most experiments in this work were performed at least three times. This repetition aims to
ensure a minimum level of consistency and reliability in the observed results.

RL algorithms are known to be very unstable. As a result, performance can vary signifi-
cantly across training runs, even when all parameters remain the same. Similarly, LLMs can
produce different outputs across queries, contributing further to the variability of outcomes.

Combining these two components introduces compounded instability into the learning
pipeline. The generated reward functions may lead to different learning dynamics in
each run, making reproducibility and convergence more challenging. By running each
configuration multiple times, we aim to average out outliers, capture general trends, and
better understand the robustness of the approach under varying conditions.

4.2.3 Suggested Micro Strategies in Prompt
In the experiments, different prompts were provided to the LLM to evaluate whether
guiding it with specific micro-strategies could lead to the generation of more effective
reward functions or not. The remaining part of the prompt remains identical across
experiments within the same scenario, as each scenario requires a distinct environment
description due to its specific characteristics (number of units).

Focus Fire prompt given to the LLM:
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Use this Strategy: To improve combat efficiency in SMACLite, the agent should
prioritize a focus fire strategy, where multiple units coordinate their attacks on
a single enemy at a time. This approach maximizes damage output, eliminates
threats faster, and reduces incoming damage by quickly lowering the number of
active enemies. The reward function should encourage this behavior by providing
higher rewards when units collectively target and eliminate an enemy rather than
distributing attacks across multiple enemies.

Dancing prompt given to the LLM:

Use this Strategy: Retreating individual units that are taking fire to allow them
to live longer will increase the time it takes for your opponent to kill your army,
allowing you more time to kill his army. After they are no longer under attack they
can be ordered to join the fight again. This technique is called Dancing.

One important note is that the LLM is used to generate reward functions based on the
prompt it receives, while the strategies like Focus Fire or Dancing describe specific tactical
behaviors expected from the agents. The LLM does not execute these strategies directly,
it only guides the training by shaping the reward function. Whether or not the agents
actually learn these strategies depends on how well the reward function encourages them
to do so.

Experiment Description Summary
The LLM-generated rewards have been tested using different hyperparameters related to
the LLM itself, the prompt provided to the LLM, and the scenario used in SMACLite. Most
experiments were repeated at least three times to make our results more consistent. We
did this because RL training involves some randomness and can be unstable.

Here are the different values for each hyperparameter:
• LLM: chatgpt-4o-latest, gpt-4o-2024-08-06, o3-mini-2025-01-31, o4-mini-2025-04-16
and gpt-4.1-2025-04-14

• Strategies mentioned in the prompt: Focus Fire, Dancing, or no strategy provided

• Scenario: 4 marines vs 3 marines, 3 marines vs 3 marines, and 10 marines vs 11
marines

Initial Training and Evaluation
The RL algorithm (MAPPO in EPyMARL and IPPO in Mava) is initialized and trained with
a reward function given by the LLM.

Iterative Improvement with LLMs
Each iteration begins with the LLM proposing a new reward function sample. This sample
is then tested within the RL environment. Following this, performance metrics are collected
and compared across different samples. The best-performing reward function among those
generated is selected to guide the next reward reflection phase.
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Model Training and Evaluation with EPyMARL
The training and evaluation process using EPyMARL begins by training a MAPPO model
with the custom reward function provided by the LLM. Once training is complete, the
model is evaluated to gather detailed values of the reward components, which are used
in the reward reflection process. This evaluation phase includes computing success rates
and reward metrics across multiple episodes typically ten in practice. Additionally, videos
are recorded to capture the agent’s behavior, allowing visual assessment of the learned
policy’s effectiveness and its ability to solve the task.

Model Training and Evaluation with Mava
Using the Mava framework, the IPPO model is trained with the reward function generated
by the LLM. During this training, reward components are tracked at regular intervals
defined by the time_interval_tracking parameter in the experiments_config.yaml file. After
the training phase, learning performance is evaluated by plotting key metrics such as the
average reward and win rate, which help assess the quality of the learning process.
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5
Results & Analysis

This chapter presents and analyzes the experimental results obtained throughout this
master’s thesis, using both the EPyMARL and Mava frameworks. The analysis begins with
an evaluation of the default reward function provided in the SMAClite environment, which
serves as a baseline for comparison with the reward functions generated by LLMs. This
baseline allows us to assess whether the LLM-generated rewards lead to improved learning
outcomes or not.

Subsequently, we evaluate the performance of RL models trained using LLM designed
reward functions across multiple SMAClite scenarios. We compare the impact of different
LLM configurations and prompt strategies on learning behavior, using metrics such as
win rates and reward evolution. This analysis highlights strengths, limitations, and trends
observed throughout the experiments. By the end of the chapter, we will gain a compre-
hensive understanding of how reward design especially when assisted by LLMs affects
training performance in SMAC environments.
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5.1 EPyMARL Results
5.1.1 Default Reward
This section presents the results of training agents in a SMACLite environment using EPy-
MARL along with the default reward function from the basic SMACLite implementation. A
description of this reward function can be found here. The results shown below correspond
to the training of three agents with the Default Reward and the MAPPO algorithm. The
maximum number of steps is set to 500; if this limit is exceeded, the episode ends. The
training has been done during a total of 1 000 000 timesteps (total of steps done across all
episodes).
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Figure 5.1: Default Reward in a 3 marines VS 3 marines scenario with mappo algorithm

The first graph shows the evolution of the win rate across timesteps. The metric be-
ing tracked is test_battle_won_mean, which is measured every 10,000 timesteps over 10
episodes (outside of training) to assess how well the agent has learned to win battles. We
can observe a high variance, which is concerning given that this is the default reward.
However, the win rate appears to improve with more timesteps.

The second graph displays the mean episode length during testing. Again, we see high
variance. This metric can be interpreted in a few ways. If the episode length is too short, it
likely indicates that the allied units died quickly. On the other hand, if the length is too
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long, it suggests that some allies survived but took too long to defeat the enemies, which is
also undesirable. Ideally, the episode length should be around 200 to 300 timesteps.

The final graph shows the average reward given to the agents. As expected, this is
proportional to the win rate, since a higher reward typically means the agent is getting
closer to winning. Like the previous graphs, this one also displays significant variance.

That was for a 3 vs 3 scenario we also to test in a even simpler scenario of 4 vs 3 which
should be more easier since the allies have the advantage of the number. In this case, let’s
just analyze the win rate and mean number of episode length. Once again the results are
not stable at all. Unfortunately, We can’t see a clean learning curve.
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Figure 5.2: Default Reward in a 4 marines VS 3 marines scenario with mappo algorithm
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Test with QMIX and IPPO
It’s possible that the problem comes from the training algorithm rather than the reward
function. To test this idea, we ran experiments using the QMIX algorithm. We repeated the
same experiment in a 4 marines versus 3 marines scenario three times and tracked only
the win rate to see if the results were more stable.
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Figure 5.3: Default Reward in a 4 marines VS 3 marines scenario with QMIX algorithm

Although the first experiment showed promising results, the other two did not produce
consistent outcomes. In fact, in the last two runs, the win rate dropped as the number of
time steps increased. All three experiments showed high variance in win rate, suggesting
that the agents weren’t learning reliably, almost as if their learning process was too random.
We also ran the same test using the IPPO algorithm in a 4 marines versus 3 marines scenario
and monitored the win rate:
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Figure 5.4: Default Reward in a 4 marines VS 3 marines scenario with IPPO algo

As we can see, the results with the IPPO algorithm are also unstable, the win rate
fluctuates significantly. It’s important to note that these training runs did not involve any
interaction with the LLM and used only the default reward function. This further supports
the conclusion that EPyMARL is not behaving as expected in our setup.

Conclusion
The experiments conducted using EPyMARL with the default reward function in SMACLite
showed that the results were not stable or consistent. The high variation in the win rate,
episode length, and reward suggests that the framework may not be ideal for the use of
LLM-generated reward functions. Although EPyMARL is the recommended framework for
training agents in SMACLite, we found that it does not suit our needs well. In our case,
EPyMARL produced unstable results even when using the default reward function. This
made it difficult to run consistent experiments and highlighted the need for a different
framework that supports faster and more reliable training (Mava), especially when running
many experiments. In the next section, we examine the results of using theMava framework
with the default reward function to see if it produces more stable outcomes. If so, it would
provide a more reliable baseline for comparing against our LLM-based reward training.
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5.2 Mava Results
These results are made with a IPPO algo and a Sebulba architecture. Indeed, SMACLite is a
competitive MARL setting where agents must not only optimize their own performance
but also consider and outmaneuver other agents. Sebulba’s strategy of anticipating and
exploiting the flaws of others aligns well with the dynamics of SMACLite, where agents
need to adapt quickly and act strategically.

5.2.1 Default Reward

Figure 5.5: 4vs3 Win Rate And Mean Reward Default Reward

Figure 5.6: 3 vs 3 Win Rate And Mean Reward Default Reward

Figure 5.7: 10 vs 11 Win Rate And Mean Reward Default Reward
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In all scenarios with the default reward, agents show clear learning progress.

• 4v3 scenario: Wins begin to appear before 50,000 timesteps, with steady reward
growth indicating increasing winning.

• 3v3 scenario: Wins start showing up slightly later, around 75,000 timesteps.

• 10 vs 11 scenario: Wins start to go up around 350,000 timesteps

This demonstrates consistent behavior, as the win rate increases steadily with the number
of timesteps and shows minimal fluctuation in simpler scenarios. In contrast, in more
challenging setups; such as the 10 vs 11 scenario, agents begin to achieve wins later, and
the results exhibit greater variability. This increased fluctuation is due to the inherent
randomness of RL training and the complexity of the task. Overall, these observations
confirm that the default human-designed reward is well suited for the environment, and
that Mava’s algorithm provides stable and reliable performance across varying levels of
difficulty.

5.2.2 LLM Reward
gpt-4o Focus Fire
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Figure 5.8: Gpt-4o Reward Focus Fire in a 4 marines VS 3 marines scenario with IPPO algo

The LLM generally designs effective reward functions by the end of each Eureka process,
with most runs reaching a 100% win rate. In the 4 vs 3 scenario, where alies outnumber
enemies, experiment 1 shows steady improvement across iterations: later reward functions
learn more quickly to eliminate foes, and by the final iteration of experiment 1 and the
first of experiment 3 they begin winning at roughly 50,000 timesteps, matching the Default
Reward. Thus, in this setting the LLM can craft reward functions as effective as the
human-designed one, even if simpler. Experiment 4 takes longer to excel but still yields
reward functions that ultimately hit 100% wins. By contrast, experiment 2 fares poorly: its
first iteration yields unstable learning, and later iterations offer no gains, illustrating that
prompt iteration is not always beneficial. Still, with 3 of 4 experiments succeeding, GPT-4o
proves largely capable of designing reward functions for this scenario

Regarding the mean reward of the first experiment, we can see that it increases with each
iteration, suggesting that the LLM is adjusting the reward scale to better guide learning. In
the final iteration, the mean reward stabilizes around 10,000 which is much higher than
the Default reward, which rarely exceeds 20. This highlights that what matters most isn’t
the absolute reward value, but whether the reward function consistently reflects better or
worse actions. As long as the agent can distinguish improvement e.g., 4,000 vs 10,000 it
can learn effectively. That was for the first experiment, but we can see that the reward
scale changes a lot across the experiments. In the third experiment, all the rewards from
the different reward functions stay below 200, and sometimes even go negative. In Last
experiment, we often see negative rewards and small positive rewards. The reward scale is
part of the design of the reward function, but as explained earlier, the most important thing
is being able to learn and distinguish good actions from bad ones. This is a good example
that shows different reward scales can still work to complete the same task successfully.

Finally, compared to the Default reward function, the best reward function starts winning
at about the same time. Like the Default reward, the LLM’s reward also focuses on
reducing enemy health. Even though the prompt says to use a Focus Fire strategy without
explaining how, the LLM still figures out how to create a reward that helps the agent beat
the enemies by checking the enemies health.
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# Update the reward components
for agent_index, obs in enumerate(observation):

enemies_info = obs[4:4 + 5*3]

# Compute enemy health sum
total_enemy_health = sum(enemies_info[i+4] for i in range(0, len(enemies_info), 5))

# Reward component for reducing enemy health
previous_enemy_health = reward_components.get("prev_total_enemy_health", total_enemy_health)
health_reduction_reward = previous_enemy_health - total_enemy_health

# Stronger focus on reducing enemy health
total_reward += health_reduction_reward * 1000
reward_components["prev_total_enemy_health"] = total_enemy_health

# Focus fire reward
if action[agent_index] in range(6, 9):

target_enemy = action[agent_index] - 6
if enemies_info[target_enemy * 5 + 4] > 0: # Target is alive

focus_fire_bonus += 100 *
# Increase reward for focus fire
action.count(action[agent_index])

Figure 5.9: Code from experiment 1 and iteration 3

In this section of the code, we observe how the LLM-generated reward function updates
the reward components. A significant reward is granted for reducing enemy health. Ad-
ditionally, the final part of the code implements the focus fire strategy, where a bonus is
awarded if multiple allies target the same enemy. As in the Default Reward the reward
Function of the LLM give strong reward when damaging enemies, this show that both
reward have similitude with each other.
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Figure 5.10: Gpt-4o Reward Focus Fire in a 3 marines VS 3 marines scenario with IPPO algo

In the tougher 3 vs 3 scenario, agents lose their numerical advantage. Experiment 1 shows
the LLM’s first three reward functions failing (win rate 0%), but the last three eventually
hit 100%, indicating Eureka finally corrected the reward. The fastest learner and the default
reward both start winning near 100,000 timesteps and soon lock at 100%, proving GPT-4o
can match the human-made reward here. Experiments 2 and 3 were weaker. In experiment
2 no valid reward emerged; scaling tweaks visible in the mean-reward graph still left the
agent unable to win. Experiment 3’s first iteration did reach 100% slowly, but later iterations
produced invalid rewards that could not teach the agent. Experiment 4 partly repeated ex-
periment 1: the first iteration’s reward was already strong, so further Eureka passes changed
little. The last iteration did achieve wins earlier, though it never restored a steady 100% rate.

We can conclude that this model is sometimes capable of producing reward functions
achieving effective learning results for this scenario, but it doesn’t work consistently. In
fact, the reproducibility of the experiment appears to be fifty fifty, with only 2 out of 4
experiments yielding successful outcomes.

focus_fire_bonus = 150.0 # Increased to emphasize focus fire
# Focus fire bonus: reward more if the same enemy is targeted by multiple agents
enemy_target_counts = np.zeros(num_enemies)
for a in action:

if 6 <= a <= 8:
target_enemy = a - 6
enemy_target_counts[target_enemy] += 1

reward += np.sum(enemy_target_counts[enemy_target_counts > 1]) * focus_fire_bonus

Figure 5.11: Code from experiment 1 and iteration 5
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This is how the focus fire bonus is implemented in the last iteration of the first experiment
with the 3 vs 3 setup. It works well the code gives 150 points for each enemy that’s targeted
by more than one ally at the same time. When the strategy is clearly explained, GPT-4o is
able to accurately reflect the Focus Fire strategy in the reward function for this scenario.

Figure 5.12: Gpt-4o Reward Focus Fire in a 10 marines VS 11 marines scenario with IPPO algo

For this scenario, the LMM faces more difficulties. First, it has a numerical disadvantage,
and the number of agents to deal with is more complex. Indeed, the observation space is
larger and may be harder for the LLM to understand, although the principle remains the
same as before. We observe that for the first experiment, the best iteration was the first
one, which is strange since we expect that the quality of the reward functions improved
with the Eureka iteration. Here, however, this is not the case. The first iteration performs
the best, and then the results decline. Iterations 1, 2, and 3 all have a win rate of zero,
while the last two still achieve a win rate but learn more slowly than iteration 0. The other
experiments 2 and 3 didn’t produce any interesting reward function. When comparing the
only interesting result to the Default reward training, we see that the first iteration takes
much longer to achieve the goal 1,100,000 timesteps compared to 350,000 with the default
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reward. In this scenario, we can say that the LLM fails to generate reward functions that
perform as well as the default one.

In the first experiment, the mean reward stays below 200 in all iterations except for
iteration 2, which didn’t lead to any success. Iteration 1 shows the biggest improvement
over time, which is a good sign that the agents are learning. The other iterations don’t
show this pattern. In experiments 2 and 3, the mean reward increases early for most
reward functions, but this doesn’t help the agents learn how to win. This suggests the
reward functions aren’t well designed, agents are still maximizing reward, but without
reaching the goal (Reward Hacking). We will see what component of the reward function
could lead to such behavior.

Bellow is the code of the reward function from the iteration 2 of experiment 2. For this
reward function, we see that the mean reward increases over time from below 5,000 to
over 10,000 after 1,000,000 timesteps without the agent actually reaching the goal.
num_agents = 10
num_enemies = 11
max_steps = 500

# Initialize reward components
reward_focus_fire = 0.0
reward_enemy_elimination = 0.0
reward_time_penalty = 0.0
reward_threshold_bonus = 0.0
total_reward = 0.0

# Track enemies' health and attacks
current_enemy_health = np.zeros(num_enemies)
attacks_on_enemies = np.zeros(num_enemies)

# Parse observations to determine health and actions directed at enemies
for agent_idx in range(num_agents):

obs = observation[agent_idx]

for enemy_idx in range(num_enemies):
base_idx = 4 + 5 * enemy_idx
enemy_health = obs[base_idx + 4]
if enemy_health > 0:

current_enemy_health[enemy_idx] = enemy_health
if 6 + enemy_idx == action[agent_idx] and enemy_health > 0:

attacks_on_enemies[enemy_idx] += 1

# Encouragement for focus firing: reward for concentrating attacks on the same enemy
reward_focus_fire += np.sum(attacks_on_enemies * (attacks_on_enemies - 1) / num_agents)

# Reward for significant enemy health reduction thresholds and total health reduction
previous_enemy_health = np.array([reward_components.get(f'enemy_{i}_health', 1.0) for i in range(num_enemies)])
enemy_health_lost = previous_enemy_health - current_enemy_health
reward_enemy_elimination += np.sum(enemy_health_lost)

# Bonus for reducing any enemy health below critical thresholds
critical_health_threshold = 0.2
for i in range(num_enemies):

if current_enemy_health[i] < critical_health_threshold and previous_enemy_health[i] >= critical_health_threshold:
reward_threshold_bonus += 2.0 # reward extra for reducing below critical threshold

# Time penalty to encourage faster completion
if step >= max_steps:

reward_time_penalty -= 1.0

# Sum all reward components
total_reward = (

reward_focus_fire * 0.1 + # Scale focus fire rewards
reward_enemy_elimination * 1.0 +
reward_threshold_bonus * 0.5 +
reward_time_penalty

)

# Record the current health for the next step comparison
for i in range(num_enemies):

reward_components[f'enemy_{i}_health'] = current_enemy_health[i]

# Return total reward as a NumPy array repeated for each agent (assuming 10 agents)
return np.full(num_agents, total_reward, dtype=np.float32), reward_components
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Figure 5.13: Code from experiment 2 and iteration 2

The reward function, as currently designed, contains several elements that allow agents to
accumulate high rewards without actually achieving the intended goal which is defeating
all enemies. The main problem lies in the way rewards are assigned based on enemy health
reduction rather than on enemy elimination. The function gives a significant reward
for any decrease in enemy health, which encourages the agent to spread damage across
multiple enemies instead of focusing on eliminating them. This means that an agent can
maximize its reward by simply lowering the health of many enemies a little, rather than
fully defeating any of them.

Additionally, while the function includes a focus fire component meant to encourage agents
to concentrate their attacks, this part of the reward is heavily down scaled (multiplied by
0.1), making it too weak to influence the agent’s behavior compared to the general damage
reward. As a result, the agent may ignore this signal entirely.

There is also a reward bonus given when an enemy’s health drops below a critical
threshold (e.g., 0.2), but this is only triggered once, regardless of whether the enemy is
later finished off or not. This encourages the agent to repeatedly push enemies just below
the threshold for the bonus, again without needing to defeat them, which is a classic form
of reward hacking maximizing reward signals without achieving the task’s true goal.

Furthermore, the function lacks any explicit reward for actually winning, there is no
sparse reward such as eliminating all enemies even if it is suggested to use them in the
initial prompt. Without this, there’s no clear signal guiding the agent to complete the
overarching objective.

Together, these design choices lead the agent to optimize for easy-to-reach sub goals (like
small health reductions or threshold bonuses) instead of focusing on the more complex
and meaningful goal of winning the fight. The remaining reward functions share the same
design flaws in this experiment, which explains the consistently zero win rate.

gpt-4o-latest Focus Fire
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Figure 5.14: Gpt-4o-latest Focus Fire Reward in a 4 marines VS 3 marines scenario with IPPO algo

We can see in this first scenario that gpt-4o-latest also produces rewards functions that
achieves a 100% win rate at some point, especially in experiment 1 and 3. However, the
model learns more slowly compared to when the reward is provided by the fixed gpt-4o
version, best reward only starts to win after 200,000 timesteps against 50,000 for the best
gpt-4o reward. For the first experiment, after each iteration, the reward function improves,
as it takes less time to learn except in the final iteration, which appears to be completely
incorrect. The Second experiment is a fail and the third produce reward function that
achieve a 100% win rate but slower than in the first experiment. The mean reward in the
second experiment clearly shows a case of reward hacking, similar to what was observed
earlier.
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Figure 5.15: Gpt-4o-latest Focus Fire Reward in a 3 marines VS 3 marines scenario with IPPO algo

In the 3 marines versus 3 marines scenario, gpt-4o-latest seems to struggle more than the
older gpt-4o version. In fact, it only manages to produce a well designed reward function
by the fifth iteration of the first experiment, all other ones are not well suited for the task.
The reward function from the fifth iteration gives smaller rewards, as shown in the second
graph of the first experiment, but it still manages to successfully complete the task. The
other two experiments failed. In the last experiment, the mean reward function of the first
iteration increase a lot but still achieve a constant win rate of zero:

# Reward for reducing enemy health (aggressive focus on enemy)
delta_enemy_health = prev_enemy_health - current_enemy_health
reward_enemy_dmg = delta_enemy_health * 5.0 # aggressive weight

focus_fire_reward = 0.0
for count in attack_counts:

if count >= 2:
focus_fire_reward += count * 0.5 # bonus for coordinated attacks

enemies_killed = prev_enemy_units - new_enemy_units
kill_reward = enemies_killed * 15.0

# Success/failure rewards
terminal_reward = 0.0
if done:

if new_enemy_units == 0:
terminal_reward += 50.0 # won

elif new_ally_units == 0:
terminal_reward -= 50.0 # lost

elif step >= 500:
terminal_reward -= 20.0 # timed out

Figure 5.16: PArts of Code from experiment 3 iteration 0
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One of the most significant issues lies in the aggressive weighting of the reward
for reducing enemy health. The function multiplies the change in enemy health by
a factor of 5, giving strong, dense rewards for any damage dealt. This emphasis
on health reduction, rather than elimination, risks encouraging agents to distribute
damage across multiple enemies rather than focusing on killing them. In contrast,
the reward for actually eliminating an enemy is only 15 per kill, which may not be
high enough to outweigh the easier, continuous rewards gained from merely lowering
health across multiple targets. As a result, agents may learn to "farm" partial dam-
age for high reward instead of pursuing the more meaningful objective of winning the fight.

Although there is a bonus for focus fire when multiple agents attack the same target, the
incentive is relatively small (0.5 per coordinated attack) and might be overshadowed by
the dominant health reduction reward. If the focus fire bonus is not scaled appropriately, it
will fail to sufficiently shape coordinated behavior and leading agents to act independently
or inefficiently.

Finally, while the terminal rewards do provide clear success and failure signals: 50 for a win,
-50 for a loss, they are sparse and only available at the end of an episode. Moreover, since the
agent can still achieve high total rewards without ever winning, these terminal bonuses may
not be sufficient to redirect the learning process toward the actual goal of consistent victory.

It’s important to note that this is just the first iteration, and having scaling issues early
on is acceptable. We expect these problems to be fixed in later iterations, but that didn’t
happen in the last experiment.
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Figure 5.17: Gpt-4o-latest Focus Fire Reward in a 10 marines VS 11 marines scenario with IPPO algo

The results for the most difficult scenario are quite clear: the LLM did not produce any
useful reward function. While the fixed gpt-4o version also struggles more in this scenario,
it still manages to generate a reward function that eventually learns how to win slower
than the default reward in his first experiment, but still valuable. In contrast, none of the
reward functions from gpt-4o-latest are usable for this more difficult task. This might
suggest that there is some regression in the latest updates of the model for the completion
of our task which is generating well designed reward function for SMAClite. We should
also keep in mind that even though the experiment was repeated three times, GPT-4o’s
success in this scenario in the first experiment could still be due to luck. So, we can’t say
with full certainty that GPT-4o-latest performs worse on this task than GPT-4o-2024-08-06.

It’s important to note that different numbers of iterations were performed across experi-
ments to determine if more iterations were needed to refine the reward function and make
it better suited for the task. However, this did not affect the outcome.

# === Focus Fire Reward ===
focus_fire_reward = 0.0
focus_fire_kill_bonus = 0.0
for eid, count in targeted_enemies.items():

if count >= 3:
focus_fire_reward += (count - 2) * 5.0
# Check if this enemy died this step
enemy_idx = 4 + eid * 5
enemy_health = observation[0][enemy_idx + 4]
if enemy_health == 0.0:

focus_fire_kill_bonus += 15.0

Figure 5.18: Code from experiment 2 iteration 4

The Focus Fire logic appears to be well implemented, but there’s a scaling issue. The reward
for focus fire is too small compared to the win reward. For example, winning gives 1500
points, while focus fire might only give around 15, which has very little influence. This
means the agent isn’t strongly encouraged to adopt the focus fire behavior. That explains
one of the potential issues.
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o3-mini Focus Fire

Figure 5.19: o3-mini Focus Fire Reward in a 4 marines VS 3 marines scenario with IPPO algo

For the easiest scenario, we can see that the O3-mini model fails to produce any well
designed reward function for the task. Since it’s the simplest task, such results doesn’t
give much confidence for its performance in the next more challenging scenarios.

The mean reward is higher for iterations 0 and 2, but this did not help the agents learn how
to win. The mean reward is also extremely high, around 300,000, which might suggest
a problem with the reward function design. In these iterations, the agents learned to
maximize the reward without actually winning (Reward Hacking). If we look at the three
mean reward graphs, we can see they show similar patterns. In all three experiments, the
first iteration improves quickly at the beginning. However, the scale is different: in the first
experiment, the mean reward levels off around 100,000 timesteps, in the second around
1,300, and in the third around 2,500. This might be because the mini model gives more
consistent answers, with less variation between the same prompts.
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Also, it’s worth noting that the first iteration of the first experiment ran 600,000 timesteps
longer than the others. This was a small mistake, but it doesn’t affect the results. A training
length of 1,000,000 timesteps is enough, since the Default Reward function starts winning
after just 100,000 timesteps.

Figure 5.20: o3-mini Focus Fire Reward in a 3 marines VS 3 marines scenario with IPPO algo

In a more difficult scenario, O3-mini does manage at some point to produce a somewhat
effective reward function for the task in the first experiment. However, the quality doesn’t
match the reward functions generated by the GPT-4o models. Learning is slower, and
there’s no clear improvement over time, it seems more like a lucky outcome rather than a
sign of real understanding. The following iterations lose all previous progress, suggesting
the model doesn’t recognize or correct the issues in its reward strategies.

In the second experiment, the first iteration only starts winning near the end of training
(around 1,000,000 timesteps). We can see the mean reward increasing along with the win
rate, but the agent learns how to win too late. Still, this shows that the reward function
can tell the difference between winning and losing situations. The next iteration, however,
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shows a constant zero win rate.

In the last experiment, things are more interesting. The first iteration is already well
designed and learns quickly just before 200,000 timesteps. The second iteration performs
just as well as the Default reward, with wins starting around 100,000 timesteps, which is fast.
The last two iterations do worse, learning more slowly and failing to produce stable behav-
ior. In this case, just two "eureka" iterations were enough to get the best results. Asking the
LLM to improve a reward function that’s already close to optimal can actually make it worse.

focus_fire_scale = 1.0
# --------------------------------------------------
# 2. focus_fire Component
# --------------------------------------------------
# Calculate the number of unique enemy targets among attack actions.
attack_targets = []
for act in action:

if 6 <= act <= 8:
# Convert action to enemy index (0, 1, or 2)
attack_targets.append(act - 6)

if attack_targets:
current_focus_fire = float(len(set(attack_targets)))

else:
# If no attack action was taken, assume worst-case
current_focus_fire = 3.0

# Default previous focus criterion is 3 (worst coordination) if not provided.
prev_focus_fire = reward_components.get("focus_fire", 3.0)
focus_fire_reward = (prev_focus_fire - current_focus_fire) * focus_fire_scale

Figure 5.21: Code from experiment 1 and iteration 3

We can see that the implementation of the Focus Fire strategy is different that what we
have seen so far with the other models. It checks how many unique enemies are being
targeted: fewer targets mean better coordination. A reward is given when the number of
unique targets decreases compared to the previous step. However the reward is quite small
for Focus Fire which might explain why the agents struggle to learn how to win.

In conclusion, the results in a 4 vs 3 scenario are the worst seen so far, with no valuable
reward function produced. We expected similar results in a more complex scenario, but
this was not the case. In a 3 vs 3 scenario, O3-mini performed better than expected. In
each experiment, it produced at least one reward function that successfully guided the
agent to learn how to win. So, despite the challenges in the more complex setup, O3-mini
showed that it can adapt and perform well in simpler environments, demonstrating its
potential when the scenario is appropriately scaled.

O3-mini was also tested on the more difficult scenario (10 vs 11). However, it failed
to produce any reward function that helped the agents learn how to win across the 3
experiments and 12 generated reward functions. Just like GPT-4o-latest, it didn’t succeed
in this task, so the graph results are not shown as they are not relevant.
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gpt-4o Dancing

Figure 5.22: gpt-4o Dancing Reward in a 4 marines VS 3 marines scenario with IPPO algo

GPT-4o seems unable to produce a good reward when instructed to use the Dancing strategy.
While it attempts to express this strategy in the reward function, it does so unsuccessfully.
The model only follows the instructions given, without taking any initiative or adapting
its approach on its own. In the last experiment, the model learned to win some episodes
with iterations 1, 2, and 3, but in all cases, the win rate stayed below 70%. As a result,
no improvement was observed across iterations, and the reward functions were not well
designed to guide the agent towards achieving a 100% win rate.

# Introduce penalty for allies taking too much damage to encourage strategic retreats
ally_health_threshold = 0.3 * num_agents # Threshold for retreat or dancing strategy
if current_ally_health < ally_health_threshold:

total_reward -= 10

Figure 5.23: Experiment 1 and iteration 2 Dancing Implementation

# Encourage 'dancing' by penalizing low ally health when under attack
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if current_ally_health < previous_ally_health:
total_reward -= 2 * (previous_ally_health - current_ally_health)

Figure 5.24: Experiment 1 and iteration 3 Dancing Implementation

We can see that the only thing the LLM does to encourage the Dancing strategy is to add
negative rewards based on the allies’ health. The first implementation gives a -10 reward
if all agents have health below a certain threshold. The second gives a negative reward
if all agent’s health keeps dropping over time. But this creates a problem, by punishing
the agent whenever its health goes down, it ends up learning to run away from fights and
never come back. That’s not what the Dancing strategy is really about, it’s supposed to
mean retreat when low on health, then return to fight. Since nothing in the reward tells
the agent to re-engage, it might just learn to run and hide to maximize his rewards, which
is not what we want (see Reward hacking). This is a good example of the Double Bias
effect: first, we bias the prompt by telling the LLM to use a Dancing strategy (which might
not be the best for this scenario) and then the reward function it generates adds another
bias during training of agents. One thing we can say for the defense of the LLM is that the
Dancing strategy might not be the best strategy for this scenario and is more complex to
implement with the information given to the LLM.

gpt-4o-latest Dancing
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Figure 5.25: gpt-4o-latest Dancing Reward in a 4 marines VS 3 marines scenario with IPPO algo

We can see that the gpt-4o-latest model actually performs better with this prompt than
gpt-4o. Unlike gpt-4o, which seems to get "lost," gpt-4o-latest finds a way on its own to
generate a good reward function. What’s interesting is that the prompt only mentions
the "Dancing strategy," but the model also incorporates a "focus fire" strategy, despite no
explicit mention of it in the prompt. This shows that gpt-4o-latest is able to take initiative,
whereas gpt-4o seems confused when no specific strategy is provided. However, the results
are not as strong as when the prompt explicitly instructs the model to use the focus fire
strategy. One important point to note is that the focus fire strategy appears to be very
effective in these scenarios and is sufficient to win, while the dancing strategy may be
harder to express in the reward function and may not perform as well as focus fire. So the
win rate probably come from the influence of Focus Fire strategy rather than the Dancing
strategy.

# --- Focus fire bonus ---
focus_bonus = 0.0
for count in target_counts.values():

if count > 1:
focus_bonus += (count - 1) * 3.0

# --- Dancing bonus (low hp agent that moves instead of attacking)
dancing_bonus = 0.0
for i in range(num_agents):

hp = observation[i][-1]
act = action[i]
if hp < 0.3:

if act in [2, 3, 4, 5]: # moves
dancing_bonus += 1.0

elif 6 <= act <= 8: # attack while low HP
dancing_bonus -= 0.5

Figure 5.26: Experiment 1 iteration 4 Micro Strategies Implementation

In the code above, we can see just like we mentioned earlier that gpt-4o-latest decided
to introduce the Focus Fire strategy on its own, even though it wasn’t mentioned in the
prompt. Also, the way it implemented the Dancing strategy it’s not what we want. It checks
if an agent’s HP drops below 0.3; in that case, the agent should move instead of attacking.
If it moves, it gets a positive reward of 1; if it attacks, it gets a penalty of -0.5. But, the
direction of the movement isn’t checked. So if the agent moves towards the enemy, that’s
clearly not what we want but the reward still counts it as a positive move. It’s complicated
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to check but not impossible since the LLM does have access to the enemies’s normalized
positions and could use that to judge whether the agent is actually retreating. In summary,
this implementation of the dancing strategy tells agents with health below 0.3 to move, but
it doesn’t provide any direction for where to go or instruct them to return afterward, it
simply tells them to move.

o3-mini Dancing

Figure 5.27: o3-mini Dancing Reward in a 4 marines VS 3 marines scenario with IPPO algo

We can see that the first experiment is a success. o3-mini immediately generates a reward
function that achieves a 100% win rate, and the following iteration slightly improves
the stability of the learning. However, the last two iterations fail to accomplish the task.
The second experiment did not produce any effective reward function, while the final
experiment generated only one good reward function, all the others failed to achieve the
task.

# Determine ideal retreat action if any enemy is attackable.
ideal_retreat = None
if count > 0:

# Average enemy relative position.
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avg_dx = total_dx / count
avg_dy = total_dy / count
# The ideal retreat is in the opposite direction of the aggregate enemy position.
if abs(avg_dx) >= abs(avg_dy):

# Retreat horizontally.
if avg_dx > 0:

ideal_retreat = 5 # retreat west if enemy is to the east
elif avg_dx < 0:

ideal_retreat = 4 # retreat east if enemy is to the west
else:

# Retreat vertically.
if avg_dy > 0:

ideal_retreat = 3 # retreat south if enemy is to the north
elif avg_dy < 0:

ideal_retreat = 2 # retreat north if enemy is to the south

# If an ideal retreat direction is determined and the unit chooses that movement,
# reward the agent for "dancing". Also add a bonus if the unit had recently taken damage.
if ideal_retreat is not None:

if action[agent_idx] == ideal_retreat:
dancing_bonus += 0.1
if (prev_health - current_health) > 0:

dancing_bonus += 0.05

Figure 5.28: Experiment 1 iteration 1 Micro Strategies Implementation O3-mini

In this case, the o3-mini model, when prompted to implement a "dancing" strategy, was
the first among the tested models to meaningfully incorporate enemy positioning and
agent retreat behavior into the reward function. Unlike GPT-4o and GPT-4o-latest, which
generated more basic reward functions that did not truly account for tactical retreats, o3-
mini introduced logic that allows agents to move away from enemies based on their relative
positions, an essential component of a proper dancing micro-strategy. The interesting part
of the code calculates the average relative position of nearby attackable enemies (avg_dx,
avg_dy) and determines an ideal retreat direction opposite to where the enemies are. For
example, if enemies are mostly east, the agent is encouraged to move west. This could help
explain why o3-mini performed well during the initial iterations of the first experiment.

No Micro Strategies Given to the LLM



5.2 Mava Results

5

57

Figure 5.29: gpt-4o Reward in a 4 marines VS 3 marines scenario with IPPO algo and no micro Strategies given

We can see that the first experiment didn’t produce any reward function that helped
the agents learn how to win. The mean reward stays mostly constant across most iterations.

The second experiment has interesting results. The first iteration produce a constant
zero win rate, then the second quickly learn and start to have win very quickly around
20,000 timesteps which is better than the default reward that start learning around 50,000
timesteps. The next iteration try to improve the reward but this is very hard since this is
almost optimal. We will look at the code of the reward function from the iteration 1 to see
what kind of strategies it implement itself without any guidance in the strategies to use in
the prompt.

# Calculate rewards based on observations and actions
for agent_obs, agent_action in zip(observation, action):

# Extract enemy information from observation
enemies_info = agent_obs[4:19] # 3 enemies * 5 attributes each

# Reward for reducing enemy health
enemy_health_component = 0.0
for i in range(0, len(enemies_info), 5):

attackable = enemies_info[i]
enemy_health = enemies_info[i + 4]
if attackable:

previous_health = reward_components.get(f'enemy_health_{i}', enemy_health)
enemy_health_component += previous_health - enemy_health
reward_components[f'enemy_health_{i}'] = enemy_health

reward_components['enemy_health'] += enemy_health_component

# Encourage aggressive actions, particularly attacking
if 6 <= agent_action <= 8: # Attack actions are from 6 to 8

reward_components['aggression_bonus'] += 2.0

Figure 5.30: Code from experiment 2 iteration 1

This reward function uses a very simple but effective strategy that focuses on two key
elements:

1. Enemy health reduction: It gives a positive reward whenever an enemy’s health
decreases. For each agent, the function tracks the health of every enemy and adds to
the reward whenever the current health is lower than the previous one. This directly
encourages the agent to attack enemies and continue until they are defeated.

2. Aggressive behavior bonus: It rewards the agent with a fixed bonus (+2.0) whenever
it chooses an attack action (actions 6 to 8). This pushes the agent to favor attacking
over other possible behaviors like moving or idling.



5.2 Mava Results

5

58

This strategy works well in this scenario mainly because of its simplicity. A more advanced
tactic like Focus Fire isn’t required here, as the agents already have a numerical advantage.
However, in more complex situations, this approach might not be sufficient. Interestingly,
even though the reward function doesn’t include any sparse rewards, the agents still
manage to learn how to win quickly.

In the last experiment, only iterations 0 and 2 showed promising results, while the others
either led to a constant zero win rate or unstable outcomes.

# Check if episode is done
if done:

if total_enemy_health == 0:
reward_components['episode_end'] = 100.0 # Bonus for winning

else:
reward_components['episode_end'] = -50.0 # Penalty for losing

total_reward += reward_components['episode_end']

Figure 5.31: Code from experiment 3 and iteration 0 Sparse Reward

In the first iteration of this experiment, the reward function contains a sparse reward
implementation, unlike iteration 2 in the previous experiment.This shows that even
with sparse rewards, the agent can learn effectivelywhen the signal alignswell with the task.

To conclude on the GPT-4o results without a given strategy, we see that it implements
basic behaviors without mentioning known micro-strategies like Focus Fire or Dancing. It
keeps things simple, which works well in this simple scenario, but may not be enough in
more complex situations.
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Figure 5.32: gpt-4o-latest Reward in a 4 marines VS 3 marines
scenario with IPPO algo and no micro Strategies given

In the first experiment, we observe that the first two iterations produce reward functions
that achieve a 100% win rate quickly, similar to the Focus Fire prompt. However, the last
two iterations didn’t result in any interesting reward functions. The learning in the first two
iterations is unstable initially but stabilizes around 400,000 timesteps. This is still slower
learning compared to the Default Reward and the previous results with GPT-4o-2024-08-06.

# Total reward
total_reward = reward_from_enemy_damage + reward_from_attack + time_penalty + win_reward

Figure 5.33: Reward components, iteration 1 experiment 1

The strategy used here is also quite basic. It relies on rewards for attacking, damage dealt
to enemies, and a time penalty to encourage quicker episode completion. The win reward
is a sparse reward, granting +100 for winning and -50 for losing.

For the second experiment, the first two iteration have some wins early but the learning is
instable, the iteration 2 reward function is more stable but learn slowly. We will see what
strategy is used.

# === 5. Enemy visibility reward ===
curr_enemy_in_sight = 0
for i in range(num_enemies):

for obs in observation:
idx = base_offset + i * obs_per_enemy
if obs[idx] == 1:

curr_enemy_in_sight += 1
break # count each enemy only once

prev_enemy_in_sight = reward_components.get("enemy_in_sight_prev", curr_enemy_in_sight)
reward_enemy_in_sight = (curr_enemy_in_sight - prev_enemy_in_sight) * 0.2
reward_components["enemy_in_sight_prev"] = curr_enemy_in_sight

# === Total Reward ===
total_reward = (

reward_enemy_damage +
reward_attack_used +
reward_step_penalty +
reward_victory +
reward_defeat +
reward_enemy_in_sight

)

Figure 5.34: Part of Code Experiment 2 Iteration 2
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As before, the total reward is calculated with significant emphasis on attack actions, enemy
damage, and victory. However, an additional component has been introduced: the reward
for enemies in sight. This reward component encourages agents based on how many
enemies they can see. It counts the number of enemies visible for each agents and compares
it to the previous count of visible enemies. If the number of visible enemies has increased
since the last step, the agent is rewarded with a positive value, scaled by 0.2. Encouraging
agents to spot enemies helps prevent situations where they might flee from combat.
The scale of the reward for this reward function is quite small, 20 for a win and -20 for a loss.

The last experiment failed; even though it attempted to implement the same strategy as
before, it was unsuccessful.

Figure 5.35: o3-mini Reward in a 4 marines VS 3 marines
scenario with IPPO algo and no micro Strategies given

In the first experiment, only iteration 0 shows an increasing win rate. The second experi-
ment fails, while the last experiment succeeds. In the last experiment, most iterations learn
how to win quickly, around 50,000 timesteps. The reward components are the same as
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those used in gpt-4o and gpt-4-latest:

# ---- Total Reward Computation ----
total_reward = (

enemy_health_reward_scaled +
aggressive_bonus -
time_penalty +
win_bonus +
loss_penalty -
max_step_penalty

)

Figure 5.36: Reward Computation iteration 1 Experiment 3

Indeed, the reward components focus, as before, on enemy health, damage dealt to
enemies, a sparse win bonus, and a time penalty.

In conclusion, the results show clear differences in how each model handles reward function
design depending on the guidance given. GPT-4o-2024-08-06 previously struggled when
instructed to implement the "Dancing" strategy; it focused heavily on that specific but
complex behavior and failed to represent it effectively in the reward function. However,
when no strategy was provided in the prompt, it reverted to basic approaches like rewarding
enemy health reduction that worked well in the simpler scenario. GPT-4o-latest behaved
similarly: although it previously managed to implement Focus Fire when prompted with
Dancing prompt, we expected it to attempt more advanced strategies in this case. But,
it also defaulted to simple but effective techniques, just like its earlier version. Finally,
o3-mini showed the most interesting behavior. Without any strategy explicitly provided, it
actually performed better than when we asked it to implement Focus Fire. This suggests
that o3-mini benefits from less constrained prompts, allowing it to form simpler, more
general reward functions that are well suited for straightforward tasks.

Test With More Recent Models
In this section, we evaluate more recent models GPT-4.1 and o4-mini which are expected
to offer improved performance. However, this may not necessarily be the case, as earlier
results showed that gpt-4o-latest did not outperform its fixed-version with the Focus Fire
prompt. It’s important to note that the following experiments were conducted using the
same prompts as in the previous tests, the same of the 4 marines versus 3 marines scenario.
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Figure 5.37: gpt-4.1 Reward in a 4 marines VS 3 marines scenario with IPPO algo and with Focus Fire

From the three experiments in the 4 vs 3 scenario using GPT-4.1, we can see that the results
are not what we expected for a ’supposed’ better model. The first and last experiments did
not produce any well designed reward functions. The only interesting reward function
comes from the third iteration of the second experiment. This one is unusual because it
manages to reach around 100% win rate, but then suddenly drops after 800,000 timesteps.
It’s possible that the agent learned to hack the reward after 800,000 timesteps, which could
explain this strange behavior during training. But the reward hacking is also unlikely since
we can notice that the mean reward slightly drops around 800,000 timesteps, suggesting
that the reward function reflects the sudden losses after winning. Possibly an anomaly
during the Mava training.
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Figure 5.38: o4-mini Reward in a 4 marines VS 3 marines scenario with IPPO algo and Focus Fire prompt

From the graphs above, it is clear that neither GPT-4.1 and o4-mini perform well on this
task. In the simpler 4 vs 3 scenario, GPT-4o significantly outperforms both, generating
reward functions that match the performance of the human-designed baseline for this
scenario. In contrast, GPT-4.1 fails to produce any effective reward function for the Focus
Fire prompt. Interestingly, o4-mini does manage to generate one reward function that
eventually reaches a 100% win rate, but it does so much more slowly after approximately
400,000 time steps whereas GPT-4o starts improving around the 50,000 time steps.
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Figure 5.39: gpt-4.1 Reward in a 4 marines VS 3 marines scenario with IPPO algo and no micro Strategies given

Additionally, we ran an experiment where GPT-4.1 was prompted without explicit mention
of micro-strategies. While the resulting reward function performed slightly better than
with the Focus Fire prompt, it still lagged behind previous results. It generates one
promising reward function, but learning progresses slowly, with the first wins only
appearing after approximately 400,000 timesteps.

These findings highlight that newer models are not necessarily better for every task. While
GPT-4.1 and o4-mini may benefit from larger context windows and improved reasoning in
some domains, they appear to regress in this specific application.
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5.3 Results Overview
This section summarizes how the three most-tested models; GPT-4o, GPT-4o-latest, and
o3-mini, perform in each scenario. It shows the average overall Max win rate, calculated
from every reward function created in all Eureka iterations and experiments. In other
words, for a given experiment, it calculates the maximum win rate observed. Then, it
repeats this for all instances of the same experiment and computes the average of these
maximum win rates.

Figure 5.40: Focus Fire Mean win rate for each LLM models and Scenarios

The first graph shows how each model performs with the Focus Fire prompt. In the 4 vs
3 scenario, GPT-4o has a mean max win rate of 76.25%. GPT-4o-latest follows at 53.19%,
while o3-mini is almost ineffective at 2.08%. When the scenario shifts to 3 vs 3, every
model’s Max win rate drops: GPT-4o falls to 43.75%, o3-mini unexpectedly climbs to 40.6%,
and GPT-4o-latest sinks to 11%. GPT-4o still performs best overall. In the toughest 10-vs-11
scenario, GPT-4o has a mean max win rate of 12.7%, GPT-4o-latest and o3-mini records a
0% mean max win rate, highlighting how challenging this setup is for the models.

Figure 5.41: Dancing Mean Win rate for each LLM models in 4 vs 3

This graph shows the average max win rate results using the Dancing prompt in a 4v3
scenario. As we can see, GPT-4o did not succeed in this task, it mostly failed to produce any
reward function that could train the agents effectively, with an average max win rate of
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only 14.58%. On the other hand, GPT-4o-latest performed better, reaching an average max
win rate of 41%, suggesting that this newer version of the model takes more initiative on
its own. O3-mini performs not badly in this experiment with a mean max win rate of 25%.
As previously noted, it was the only model that better implemented the Dancing strategy.

Figure 5.42: No Micro Strategies Mean Win rate for each LLM models in 4 vs 3

The graph above shows average win rates for the models in the 4vs3 scenario when the
prompts include no hints about which micro-strategies to use. When each model must
invent its own tactics, GPT-4o leads with a 44.8% win rate, GPT-4o-latest follows at 42.7%,
and o3-mini trails at 33.75%.

Overall, the results show that GPT-4o performs best in straightforward scenarios, especially
with clear strategies like Focus Fire or no strategy at all. It consistently generates effective
reward functions early but struggles in complex environments like 10vs11. GPT-4o-latest
shows some improvement in strategic initiative, performing better than GPT-4o and o3-mini
in the Dancing scenario, but it still mostly relies on the same basic reward components and
lacks consistent performance. O3-mini performs poorly in 4vs3 Focus Fire configuration
but stands out in the Dancing prompt, being the only model to implement a reward function
that truly reflects the strategy by considering enemy positions and agent retreat. It also
generalizes reasonably well in simple tasks without anymicro-strategy given in the prompts.
In summary, GPT-4o is the most reliable overall, GPT-4o-latest is slightly more creative,
and o3-mini shows potential in specific strategic contexts.

5.4 Deeper Comparison With the Default Reward
Now that we have completed and analyzed all our experiments, we can summarize our
findings and draw conclusions to assess whether the LLM-generated reward functions are
better than the Default Reward.

To begin with, let’s recall that the Default Reward is quite simple. The goal in the SMAC
environment is to defeat all enemy units. The Default Reward encourages this behavior
by giving positive feedback for reducing enemy health, killing enemies, and ultimately
winning an episode. So while the strategy is straightforward, the real challenge lies in
designing a reward function that effectively encourages agents to adopt this behavior
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through training.

One key strength of the Default Reward is its generality it works across different SMAC
scenarios (e.g., 4v3, 3v3, 10v11 with shields, and mixed unit types). On the other hand, the
reward functions generated by LLMs are scenario-specific, as we tailor the prompts to the
environment. This is useful, as it allows us to give precise examples of the observation and
action spaces for the model to understand the task better.

From the experiments, especially in the simpler 4 vs 3 and 3 vs 3 scenarios, we observed
that both GPT-4o and O3-mini were capable of producing reward functions that trained
agents as quickly as, and in some cases faster than, the Default Reward. However, in the
more complex 10 vs 11 scenario, none of the models succeeded in producing a reward
function that performed as well. This is a major limitation of LLMs’s reward functions
identified in this thesis.

Understanding why this happens is crucial. One issue is that LLMs can sometimes generate
invalid reward functions, by invalid we mean code that contains syntax errors (which
did not occur in our tests), or with logical or indexing mistakes, meaning that the LLM
didn’t clearly understand the observation space. While such errors were rare in simple
environments, they occurred more frequently in complex scenarios like 10 vs 11. This
suggests that even when the prompt is well-structured, the increased complexity can lead
the LLM to misinterpret or mishandle the data. It’s also possible that the reward code
executes without errors but still interprets the game state incorrectly, leading to ineffective
rewards.

Interestingly, we also found that when no specific micro-strategy is requested, the
LLMs tend to generate basic and effective strategies on their own, such as giving
rewards for damaging enemies or performing attack actions, much like the Default
Reward. This indicates that LLMs do understand the core components of a good reward
function. However, the issue lies in the implementation details, where small mistakes can
significantly affect performance.

There are several other factors that can influence performance, particularly in complex
scenarios. First, reward scaling might not always be well-adjusted. This is supposed to
be addressed through the iterative reflection process, but it may not always be enough.
Finally, our ability to explore more iterations and samples is limited by computational
constraints. Running more extensive experiments would be ideal, but was not feasible
within the scope of this thesis.

In conclusion, while LLMs like GPT-4o and O3-mini can successfully generate reward
functions for simple tasks, they still struggle with complex scenarios due to errors in
observation handling, reward logic, and limited generalization. Their performance is
promising, but not yet consistent or robust enough to replace manually designed, general-
purpose reward functions like the Default Reward, especially in more difficult environments.
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6
Limitations & Future Work

In this section, we discuss the potential limitations and possible future work of this master
thesis.

6.1 Limitations
One major limitation of this master thesis is the long training time required for RL
experiments. Limited computational resources significantly constrained the number of
experiments we could perform. Access to more powerful hardware would have enabled
broader testing. The experiments have been performed on 2 different machines:

Component First Machine Second Machine
CPU i5-10210U i5-12400F
RAM 8.00 GB 16.00 GB
GPU No GPU RTX 3060Ti

Storage 500 GB SSD 1 TB SSD

Table 6.1: Comparison of the two machines used for experiments

For the first machine, the experiments for the 4vs3 and 3vs3 scenarios took approximately
70 minutes, a bit over an hour, for a single sample of one iteration of the Eureka experiment.
This time must be multiplied by the total number of iterations performed and the number
of samples generated in each iteration. In general, one sample was produced per iteration,
and four iterations were performed. Thus, an entire experiment generally took around
280 minutes (±4 hours and 30 minutes) on this machine, for a training of 1,000,000 time
steps. For the 10vs11 scenario, we needed double the number of time steps, as it is a more
challenging setup, but these experiments were carried out the other machine.

On the second machine, the 4vs3 and 3vs3 scenarios took about 30 minutes each, meaning
an entire experiment lasted roughly 2 hours, which was quicker than on the first machine.
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However, this machine was only available on weekends, as it was a fixed PC. The 10vs11
experiments, on the other hand, took two to three times longer than the 4vs3 and 3vs3
experiments, as they required twice the number of time steps and each episode lasted longer
due to the increased number of units. This justifies the limitations introduced by the longer
training times, the need to repeat the process for each LLM-generated reward function
during the Eureka process, and the constraints imposed by the available hardware resources.

Training in RL and LLMs are inherently unstable processes. When combined, they
introduce even greater instability. This work attempted to reduce the impact of this
instability by conducting multiple runs of the same experiments, aiming for more
consistent results. However, while the results provide a general sense of performance, they
lack the consistency needed to draw definitive conclusions or generalizations. Therefore,
the findings should be viewed as indicative rather than conclusive.

Additionally, considerable time was lost attempting to use the ePyMARL framework to
train agents in SMAClite. Unfortunately, ePyMARL did not produce stable or consistent
results in this context. As a result, we switched to the Mava framework, which proved to
be a better fit for our task.

Another limitation is related to the use of LLMs for reward function design. While
LLM-generated reward functions performed comparably to human-designed ones
in simple scenarios, the time spent crafting effective prompts and setting up the
Eureka reward design process may not yield a clear time-saving benefit. In some cases,
designing a consistent reward function manually may be more straightforward and reliable.

Finally, our experiments were limited to relatively simple scenarios; basic 4vs3 marine
engagements on flat maps without shields or unit diversity. This restricts the generalization
of our findings to more complex or realistic environments. The reward generated by the
LLM are specific to a scenario we can’t use it for any kind of scenario.

6.2 Future Work
A natural extension of this work would be to evaluate the proposed LLM-guided reward
generation framework in more complex SMACLite scenarios, incorporating elements such
as multiple unit types, shielded units, and more intricate or asymmetric maps. These
environments more closely resemble real-world tactical challenges and would provide a
valuable test of the robustness and generalization capabilities of LLMs when tasked with
reward design. As the tactical space becomes richer, the LLM must reason about more
diverse interactions, resource trade-offs, and longer-term strategic goals, offering a fertile
ground for studying its limitations and potential enhancements.

Another promising direction involves incorporating visual inputs such as frames or state
snapshots from episode replays into the reward reflection pipeline. Rather than relying
only on structured logs and numerical statistics, the LLM could be prompted with visual
representations of agent behavior, such as situations where allies retreat from combat or
flank enemies. This could enable the model to ground its reasoning in more human-like
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perception, potentially producing reward functions that better reflect intuitive notions
of good behavior. While this direction was considered during the course of this thesis,
practical constraints on time and tooling prevented its implementation. Future work could
involve developing pipelines to encode visual observations into descriptive prompts or
leveraging multi modal LLMs capable of processing both text and images.

As discussed earlier, a key limitation of the current framework is the scenario specific
nature of the generated reward functions. This design decision was primarily motivated by
the need for prompt clarity, as providing the LLM with detailed, scenario specific context
simplified the reward interpretation task. However, this approach limits generalization
and requires repeated manual setup for each new scenario. A natural line of improvement
would be to explore the generation of generalized, reusable reward functions through
the use of more abstract and high level prompts. Future efforts might combine prompt
engineering, few-shot learning, or fine-tuning strategies to enhance the model’s ability to
reason across diverse environments.

Another compelling direction for future work is the integration of human-in-the-loop
reward design, where domain experts or end users actively participate in refining or guiding
the reward function generation process. While this thesis demonstrates the potential of
LLMs to autonomously propose reward functions based on scenario descriptions and
observations, such models may still generate objectives that are misaligned with human
expectations and omit subtle tactical nuances. By incorporating human feedback either
through preference selection or iterative prompt adjustments, the reward generation
process could become more aligned with expert intuition and higher level goals. For
example, a human observer could be asked to rate or comment on agent performance under
a generated reward, and this feedback could be used to either update the LLM prompt
or directly influence reward function structure. This interactive loop may lead to more
interpretable and robust reward functions. Implementing such a human-in-the-loop system
would require careful interface design, efficient feedback mechanisms, and evaluation
metrics to measure improvement over purely autonomous approaches.
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7
Conclusion

This thesis looked at how RL and LLMs can work together, focusing on how LLMs can
help create reward functions that guide agent behavior in multi-agent tasks. By adapting
the Eureka framework and using the SMACLite environment, we showed that LLMs can
automatically create reward functions that help agents learn in some simple situations,
but they still struggle with more difficult ones. The experiments showed that models like
GPT-4o and o3-mini can generate useful reward functions, but their success depends a lot
on how the prompt is written, how hard the environment is, and what strategies are used.
Among the newer models tested, such as GPT-4.1 and O4-mini, the results did not clearly
show better performance compared to older models, though they were only tested on a
few simple scenarios. A major challenge remains the unstable and unpredictable nature of
RL training, made worse by the technical limits of some frameworks like ePyMARL. In
contrast, the Mava framework proved to be more reliable and was used for more consistent
testing. This work also showed how important it is to carefully design prompts and choose
the right model, as both can introduce unwanted bias. The main limits of this study were
the simplicity of the scenarios and the fact that the reward functions were specific to each
one, making it hard to apply them to other cases. Also, because of time limits, we could not
run as many experiments or try as many models and setups as we wanted. With more time,
we would have explored more scenarios, prompts, and training options. Still, this thesis lays
the groundwork for future research on using LLMs to help design reward functions. Future
work could include testing in more complex and realistic environments, using different
types of input like images or sound, and involving humans in the loop. These paths could
help make AI systems using RL and LLMs more flexible and effective.
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.1 Prompts
1 You are a reward engineer trying to write reward functions to solve reinforcement

learning tasks as effective as possible.
2 Your goal is to write a reward function for the environment that will help the agent

learn the task described in text.
3 Your reward function should use useful variables from the environment as inputs.
4 The reward function signature must be:
5 {task_reward_signature_string}
6 Don't use UTF emojis/Colored Symbols in your responses and also the only code that we 

will be used, is the one in the compute_step_reward function, don't write code
outside of this function otherwise it might cause problems.

Figure 1: Initial_system.txt

1 The Python environment description is:
2 {task_obs_code_string}
3
4 IMPORTANT: The Max number of steps per episode for this Environment is {time_limit},

once reached, the episode ends.
5
6 Write a reward function for the following task: {task_description}
7 Ensure to use the compute_step_reward function to solve this task. It is of the

highest priority and must be completed accurately and promptly.

Figure 2: Initial_user.txt

1 We trained a reinforcement learning (RL) policy using the provided reward function
and tracked the values of the individual components

2 in the reward function during training for a number of episodes equal to the length
of the features provided for each reward component.

3 Specifically, we tracked the episode_lengths and success_rate, where the success rate
is defined as 1 if the episode ends with all enemies

4 defeated and 0 otherwise. Additionally, we tracked the cumulative sum of reward
components across each episode.

5 For each cumulated sum of tracked value, we computed the following statistics: the
Mean, Standard Deviation, Max and Min;

6 Here are the values encountered:

Figure 3: policy_feedback.txt

1 Please carefully analyze the policy feedback and provide a new, improved reward
function that can better solve the task. Some helpful tips for analyzing the policy
feedback:

2 (1) If the success rates are always near zero, then you must rewrite the entire
reward function, zero success rate all the time is either because all allies
died or either if the model is to slow to kill enemies, take that into account
in your refinement

3 (2) If the values for a certain reward component are near identical throughout,
then it may indicate that the component is already at its optimized value or
that RL is not able to optimize this component as it is written. You may
consider

4 (a) Changing its scale or the value of its temperature parameter
5 (b) Re-writing the reward component
6 (c) Discarding the reward component
7 (3) If some reward components' magnitude is significantly larger, then you must 

re-scale its value to a proper range
8     (4) For the spare reward, make sure to adapt the attribution conditions if 

necessary, accordingly to its values.
9
10
11 You Should use the Focus Fire strategy: the agent should prioritize a focus fire 

strategy, where multiple units coordinate their attacks on a single enemy at a 
time. This  approach maximizes damage output, eliminates threats faster, and 
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reduces incoming damage by quickly lowering the number of active enemies. The 
reward function should encourage this behavior by providing higher rewards when 
units collectively target and eliminate an enemy rather than distributing attacks 
across multiple enemies.

12 Please analyze each existing reward component in the suggested manner above first, 
and then write the reward function code.

13 Please make sure every component uses a substracting formula with the previous one as 
follow:

14     # Exemple usage of the reward_components : conservative formula, reward for 
lowering the criterion

15     criterion = torch.abs(observation[0])  # Get the absolute value of the current 
criterion from the observation

16     previous_criterion = reward_components.get('criterion', criterion)  # Retrieve 
the previous criterion, default to current criterion if not available

17     component_reward = previous_criterion - criterion  # Reward is higher if 
criterion decreases

Figure 4: code_feedback.txt

1 The output of the reward function should consist of two items:
2 (1) the total reward (NDArray),
3 (2) a dictionary of each individual reward component.
4 The code output should be formatted as a python code string: "```python ... ```".
5
6 Some Important helpful tips for writing the reward function code (you should follow

them):
7 (1) You can enhance the task by incorporating sparse rewards for successes and

failures. Consider key events or milestones in the environment that would
benefit from such reward adjustments.

8 (2) Most importantly, you should subtract the current evolution of the components
from the previous one to track their progress towards the goal.

9 - conservative : previous-current
10 - not conservative : -current or exp(-current)
11 (3) The reward code's input variables must contain only attributes of the 

provided environment class definition (namely, variables that have prefix 
self.). Under no circumstance can you introduce new input variables.

12     (4) You should use negative reward when the episode last for too long. The 
maximum number of steps is given in the environment description, after this is 
reached, the episode ends.

13     (5) Use this Strategy: To improve combat efficiency in SMACLite, the agent should 
prioritize a focus fire strategy, where multiple units coordinate their attacks on 
a single enemy at a time. This  approach maximizes damage output, eliminates 
threats faster, and reduces incoming damage by quickly lowering the number of 
active enemies. The reward function should encourage this behavior by providing 
higher rewards when units collectively target and eliminate an enemy rather than 
distributing attacks across multiple enemies.

14     (6) Looking at the actions made by the agents trained is a good practice

Figure 5: code_output_tip.txt

1 ```python
2 def compute_step_reward(
3 observation: Tuple[np.ndarray, ...],
4 action: List[int],
5 done: bool,
6 reward_components: Dict[str, float],
7 step: int
8 ) -> Tuple[np.ndarray, Dict[str, float]]:
9 """
10     Compute the reward for a step in an environment.
11
12     Parameters:
13         observation (Tuple[np.ndarray, ...]): The current observation of the 

environment.
14         action (List[int]): The action taken by the agent.
15         done (bool): A flag indicating if the episode is done.
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16         reward_components (Dict[str, float]): A dictionary containing the reward 
components from the previous step.

17         step (int): The number of the step.
18
19     Returns:
20         Tuple[np.ndarray, Dict[str, float]]:
21             - The total computed reward as an NDArray repeated for each agent.
22             - Updated dictionary of reward components for the current step.
23     """
24
25 # Return total reward as a NumPy array repeated for each agent
26 return np.full(num_agents, total_reward, dtype=np.float32), reward_components
27 ```

Figure 6: reward_signature.txt (mava)

1 ```python
2 def compute_step_reward(observation, action, done, reward_components,step):
3 """
4     Compute the reward for a step in an environment.
5
6     Parameters:
7         observation (List[torch.Tensor]): The current observation of the environment.
8         action (numpy.ndarray): The action taken by the agent.
9         done (bool): A flag indicating if the episode is done.
10         reward_components (Dict[str, torch.Tensor]): A dictionary containing the 

reward components from the previous step.
11         step (int): the number of the step.
12
13     Returns:
14         total_reward (float): The total computed reward for the current step.
15         reward_components (Dict[str, torch.Tensor]): Updated dictionary of reward 

components for the current step.
16     """
17
18 # Exemple usage of the reward_components : conservative formula, reward for

lowering the criterion
19 criterion = torch.abs(observation[0]) # Get the absolute value of the current

criterion from the observation
20 previous_criterion = reward_components.get('criterion', criterion) # Retrieve

the previous criterion, default to current criterion if not available
21 component_reward = previous_criterion - criterion # Reward is higher if

criterion decreases
22
23 ...
24
25 return total_reward, reward_components
26 ```

Figure 7: reward_signature.txt (ePyMARL)

.1.1 Environment Description Prompts
1 ## Environment Description (3v3)
2
3 The `SMACliteEnv` is a multi-agent battle environment where 3 allied agents face off

against 3 enemy units. Each agent operates independently with limited vision (sight
range). The objective is to eliminate all enemies as quickly and aggressively as
possible.

4
5 Strategy Rule: Go all in. Be hyper-aggressive. Do not prioritize ally health. Strike

fast and hard to prevent the enemy from reacting.
6
7 ---
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8
9 ## Observation Structure (Per Agent)
10
11 Total Length: 30 values
12 (= 4 for movement + 15 for enemies + 10 for allies + 1 for own health)
13
14 ---
15
16 ### 1. Movement Capabilities
17 - Size: 4
18 - Format: `[move_N, move_S, move_E, move_W]`
19 - Example: `[1, 0, 1, 1]`
20
21 ---
22
23 ### 2. Enemy Unit Info (3 enemies x 5)
24 - Size: 15
25 - Format per enemy: `[attack_available, distance, dx, dy, health]`
26 - Example for one enemy: `[1, 0.5, 0.1, -0.3, 0.8]`
27 - If not visible or dead: `[0, 0, 0, 0, 0]`
28
29 ---
30
31 ### 3. Ally Unit Info (2 allies x 5)
32 - Size: 10
33 - Format per ally: `[alive, distance, dx, dy, health]`
34 - Example: `[1, 0.3, 0.1, -0.2, 0.85]`
35 - If not visible or dead: `[0, 0, 0, 0, 0]`
36
37 ---
38
39 ### 4. Own Features
40 - Size: 1
41 - Format: `[health]`
42 - Example: `[0.75]`
43
44 ---
45
46 ## Observation Example Format
47
48 ```python
49 [
50 1, 0, 1, 1, # Movement
51
52 # Enemy 0
53 1, 0.5, 0.1, -0.3, 0.8,
54 # Enemy 1
55 1, 0.7, -0.2, 0.1, 0.6,
56 # Enemy 2
57 0, 0, 0, 0, 0,
58
59 # Ally 0
60 1, 0.3, 0.5, -0.2, 0.9,
61 # Ally 1
62 1, 0.2, -0.1, 0.4, 1.0,
63
64 0.75 # Own health
65 ]
66
67 Full Observation (All Agents)
68 If there are 3 agents, the full observation is a tuple of 3 arrays:
69
70 (
71 obs_agent_0,
72 obs_agent_1,
73 obs_agent_2
74 )
75 Each obs_agent_i is a NumPy array of length 30.
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76
77
78 ## Action Space (Per Agent)
79 Each agent selects one discrete action at every timestep.
80 The total number of actions is:
81
82 Action Space Size = 6 + number_of_enemies - 1 = 6 + 3 - 1 = 8
83
84 Action Index => Description
85 0 => NO-OP (Only for dead units)
86 1 => STOP (Do nothing)
87 2 => MOVE_NORTH
88 3 => MOVE_SOUTH
89 4 => MOVE_EAST
90 5 => MOVE_WEST
91 6 => ATTACK enemy 0
92 7 => ATTACK enemy 1
93 8 => ATTACK enemy 2
94
95 Note: ATTACK actions (6-8) are only available if:
96
97 - The target enemy is alive
98
99 - The target is within range
100
101
102 ## Termination Conditions
103
104 An episode ends when any of the following occurs:
105
106 1.All Enemy Units are Eliminated
107 - Episode ends in success and reward is given.
108
109 2.All Allied Agents are Eliminated
110 - Episode ends in failure and penalty is applied.
111
112 3.Maximum Number of Steps Reached
113 - Episode ends automatically due to time limit.

Figure 8: 3vs3_environment_description.txt

1
2 The SMACliteEnv is a multi-agent environment where agents are units in a battle

scenario, and the goal is to strategically control and manage their actions to
defeat enemy units while maintaining their own survival. The environment involves
allied agents fighting against enemy units, with a focus on interactions such as
movement, attacking, and possibly healing. The environment is partially observable,
meaning each agent can only observe certain aspects of the world, particularly
those within its sight range.

3
4 The objective is to maximize team performance by strategically commanding units to

attack enemies. Your only goal is to defeat enemies, be very aggressive, don't let 
the enemies the time to react. Avoid giving too much importance to the health of 
allies. A typical episode ends when all enemies are defeated, all allied agents are 
eliminated, or the time limit for an episode is reached.

5
6 ---
7
8 ### Observation Structure : list(torch.tensor)
9
10 1. Movement Capabilities
11 - Size: `4 values`
12 - Description: Indicates whether the agent can move in the four cardinal directions

(up, down, left, right).
13 - Example: `[1, 0, 1, 1]` (can move up, cannot move down, can move left and right).
14
15 2. Enemy Unit Information
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16 - Size: `5` (per enemy)
17 - Description:
18 - Attack Availability: `1` if the agent can attack, `0` otherwise (if 0, all fields

are zero).
19 - Distance: Normalized distance to the enemy.
20 - Relative Position (dx, dy): X and Y position of the enemy relative to the agent.
21 - Health: Enemy's current health (normalized).
22
23 3. Ally Unit Information
24 - Size: `5` (per ally)
25 - Description:
26 - Alive Status: `1` if the ally is alive.
27 - Distance: Normalized distance to the ally.
28 - Relative Position (dx, dy): Relative position of the ally.
29 - Health: Ally's current health (normalized).
30
31 4. Agent's Own Features
32 - Size: `1`
33 - Description: Agent's own health, as a fraction of max health.
34
35 ---
36
37 ## Example Observation
38
39 Scenario: 3 enemies and 3 allies in sight.
40
41 Observation vector:
42
43 [1, 0, 1, 1,                     # Movement
44  1, 0.5, 0.1, -0.3, 0.8,         # Enemy 1
45  1, 0.7, -0.2, 0.1, 0.6,         # Enemy 2
46  0, 0, 0, 0, 0,                  # Enemy 3 (dead or out of range)
47  1, 0.3, 0.5, -0.2, 0.9,         # Ally 1
48  1, 0.2, -0.1, 0.4, 1.0,         # Ally 2
49  0, 0, 0, 0, 0,                  # Ally 3 (dead or out of range)
50  0.75]                           # Own Health
51
52 This array has a fixed size of 35 in our 4v3 scenario.
53
54 ---
55
56 ### Full Observation Tuple
57
58 If there are `n` agents in the environment, the full observation is:
59
60 (agent_obs_1, agent_obs_2, ..., agent_obs_n)
61
62 In our case (4 agents), this is a tuple of 4 numpy arrays.
63
64 ---
65
66 ## Action Space
67
68 Each agent selects one discrete action per step.
69
70 Action space size = 6 + number_of_enemies - 1
71 = 6 + 3 - 1 = 8
72 Valid actions: `0` through `8`
73
74 Available Actions:
75
76 0 => NO-OP (Only for dead units)
77 1 => STOP
78 2 => MOVE_NORTH
79 3 => MOVE_SOUTH
80 4 => MOVE_EAST
81 5 => MOVE_WEST
82 6 => ATTACK enemy 0
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83 7 => ATTACK enemy 1
84 8 => ATTACK enemy 2
85
86 Conditions for ATTACK actions:
87 - Target must be alive
88 - Target must be within range
89
90 ---
91
92 ## Action Example
93
94 actions = [3, 7, 1, 5]
95
96 Interpretation:
97 Agent 1: MOVE_SOUTH
98 Agent 2: ATTACK enemy 1
99 Agent 3: STOP
100 Agent 4: MOVE_WEST
101
102 ---
103
104 ## Termination Conditions
105
106 An episode ends if:
107 1. All Enemies are Defeated -> Reward
108 2. All Allied Units are Defeated -> Penalty
109 3. Maximum Number of Steps Reached

Figure 9: 4vs3_environment_description.txt

1 ## Environment Description (10v11)
2
3 The `SMACliteEnv` is a multi-agent battle environment where 10 allied agents face off

against 11 enemy units. Each agent is controlled independently and can only observe
within its sight range. The goal is to eliminate all enemies as aggressively as
possible.

4
5 Strategy Rule: Be hyper-aggressive. Don't hesitate. Don't worry about ally health.

Push the attack and overwhelm the enemy fast before they can react.
6
7 ---
8
9 ## Observation Structure (Per Agent)
10
11 Total Length: 105 values
12 (= 4 for movement + 55 for enemies + 45 for allies + 1 for own health)
13
14 ---
15
16 ### 1. Movement Capabilities
17 - Size: 4
18 - Format: `[MOVE_NORTH, MOVE_SOUTH, MOVE_EAST, MOVE_WEST]`
19 - Example: `[1, 1, 0, 1]`
20
21 ---
22
23 ### 2. Enemy Unit Info (11 enemies x 5)
24 - Size: 55
25 - Format per enemy: `[attack_available, distance, dx, dy, health]`
26 - Example for one enemy: `[1, 0.4, 0.2, -0.1, 0.9]`
27 - If not visible or dead: `[0, 0, 0, 0, 0]`
28
29 ---
30
31 ### 3. Ally Unit Info (9 allies x 5)
32 - Size: 45
33 - Format per ally: `[alive, distance, dx, dy, health]`
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34 - Example: `[1, 0.3, 0.1, -0.2, 0.85]`
35 - If not visible or dead: `[0, 0, 0, 0, 0]`
36
37 ---
38
39 ### 4. Own Features
40 - Size: 1
41 - Format: `[health]`
42 - Example: `[0.75]`
43
44 ---
45
46 ## Observation Example Format
47
48 [
49 # Movement
50 1, 1, 0, 1,
51
52 # Enemy 0
53 1, 0.4, 0.2, -0.1, 0.9,
54 # Enemy 1
55 1, 0.6, -0.3, 0.2, 0.7,
56 # Enemy 2
57 1, 0.7, 0.0, -0.2, 0.65,
58 # Enemy 3
59 1, 0.5, 0.1, 0.3, 0.8,
60 # Enemy 4
61 1, 0.3, -0.2, 0.0, 0.6,
62 # Enemy 5
63 1, 0.9, 0.4, -0.4, 0.55,
64 # Enemy 6
65 0, 0, 0, 0, 0, # might be dead or out of range
66 # Enemy 7
67 0, 0, 0, 0, 0,
68 # Enemy 8
69 0, 0, 0, 0, 0,
70 # Enemy 9
71 0, 0, 0, 0, 0,
72 # Enemy 10
73 0, 0, 0, 0, 0,
74
75 # Ally 0
76 1, 0.3, 0.1, -0.2, 0.85,
77 # Ally 1
78 1, 0.4, -0.1, 0.3, 0.9,
79 # Ally 2
80 1, 0.6, 0.0, 0.2, 0.95,
81 # Ally 3
82 1, 0.7, 0.2, 0.0, 1.0,
83 # Ally 4
84 1, 0.2, -0.3, -0.1, 0.88,
85 # Ally 5
86 0, 0, 0, 0, 0, # might be dead or out of range
87 # Ally 6
88 0, 0, 0, 0, 0,
89 # Ally 7
90 0, 0, 0, 0, 0,
91 # Ally 8
92 0, 0, 0, 0, 0,
93
94 # Own health
95 0.75
96 ]
97
98
99 Full Observation (All Agents)
100 If there are 10 agents, the observation is a tuple of 10 arrays:
101
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102 (
103 obs_agent_0,
104 obs_agent_1,
105 nos_agent_2,
106 nos_agent_3,
107 nos_agent_4,
108 nos_agent_5,
109 nos_agent_6,
110 nos_agent_7,
111 nos_agent_8,
112 obs_agent_9
113 )
114 Each obs_agent_i is a numpy array of length 105.
115
116 ## Action Space (Per Agent)
117
118 Each agent selects one discrete action at every timestep.
119 The total number of actions is:
120
121 Action Space Size = 6 + number_of_enemies - 1 = 6 + 11 - 1 = 16
122
123 ### Action Index Mapping:
124
125 Action Index => Description
126 0 => NO-OP (Only for dead units)
127 1 => STOP (Do nothing)
128 2 => MOVE_NORTH
129 3 => MOVE_SOUTH
130 4 => MOVE_EAST
131 5 => MOVE_WEST
132 6 => ATTACK enemy 0
133 7 => ATTACK enemy 1
134 8 => ATTACK enemy 2
135 9 => ATTACK enemy 3
136 10 => ATTACK enemy 4
137 11 => ATTACK enemy 5
138 12 => ATTACK enemy 6
139 13 => ATTACK enemy 7
140 14 => ATTACK enemy 8
141 15 => ATTACK enemy 9
142 16 => ATTACK enemy 10
143 Note: ATTACK actions (6-16) are only available if:
144 - The target enemy is alive
145 - The target is within range
146
147 ---
148
149 ## Termination Conditions
150
151 An episode ends when any of the following occurs:
152
153 1.All Enemy Units are Eliminated
154 - Episode ends in success and reward is given.
155
156 2.All Allied Agents are Eliminated
157 - Episode ends in failure and penalty is applied.
158
159 3.Maximum Number of Steps Reached
160 - Episode ends automatically due to time limit.

Figure 10: 10vs11_environment_description.txt
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.2 Project Structure
Main Files

1 |-- ePyMARL/
2 |-- mava/
3 |-- prompts/
4 | |-- smaclite/
5 | | |-- code_feedback.txt
6 | | |-- execution_error_feedback.txt
7 | | |-- initial_system.txt
8 | | |-- policy_feedback.txt
9 | | |-- reward_signature.txt
10 |-- Early_stopping.py
11 |-- epymarl_mappo.py
12 |-- eureka.py
13 |-- experiment_config.yaml
14 |-- llm.py
15 |-- mava_ippo.py
16 |-- plot.py
17 |-- requirements.txt
18 |-- README.md

Figure 11: Mains Files from the Root directory structure.

ePyMARL Experiments
1 |-- Smaclite_ePyMARL/
2 | |-- Experiments/
3 | | |-- example/
4 | | | |-- it0-s0-render/
5 | | | | |-- 2025-01-08_21-23-20/
6 | | | | | |-- Smaclite-episode-0.mp4
7 | | | |-- it1-s0-render/
8 | | | | |-- 2025-01-08_21-43-45/
9 | | | | | |-- Smaclite-episode-0.mp4
10 | | | |-- metrics/
11 | | | | |-- it0-s0/
12 | | | | | |-- congif.json
13 | | | | | |-- cout.txt
14 | | | | | |-- info.json
15 | | | | | |-- metrics.json
16 | | | | | |-- run.json
17 | | | | |-- ...
18 | | | |-- models/
19 | | | | |-- mappo_seed185390923_0_0/
20 | | | | |-- mappo_seed88704524_1_0/
21 | | | |-- tmp/
22 | | | | |-- reward_components_tmp.json
23 | | | |-- chat.txt
24 | | | |-- config.json
25 | | | |-- it0-s0-response.txt
26 | | | |-- it0-s0-rewards_components.json
27 | | | |-- plot.pdf
28 | |-- custom_maps/
29 | | |-- 3m.json
30 | |-- descriptions/
31 | | |-- v1/
32 | | | |-- env_desc.txt
33 | | | |-- task_desc.txt
34 | | |-- v2_Aggressive/
35 | | | |-- env_desc.txt
36 | | | |-- task_desc.txt
37 | |-- rl_only/
38 | |-- compute_reward.py
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39 | |-- env_utils.py

Figure 12: SMAClite ePyMARL files structures.

Mava Experiments
1 |-- Smaclite_Mava/
2 | |-- Experiments/
3 | | |-- example/
4 | | | |-- json/
5 | | | | |-- it0-s0-metrics/
6 | | | | | |-- marl_eval_plot.png
7 | | | | | |-- metrics.json
8 | | | | |-- ...
9 | | | |-- tmp/
10 | | | | |-- reward_components_tmp.json
11 | | | |-- chat.txt
12 | | | |-- config.json
13 | | | |-- it0-s0-response.txt
14 | | | |-- it0-s0-rewards_components.json
15 | | | |-- mean_episode_return_plot.png
16 | | | |-- win_rate_plot.png
17 | |-- custom_maps/
18 | | |-- 3mvs3m.json
19 | | |-- 4mvs3m.json
20 | |-- descriptions/
21 | | |-- v1/
22 | | | |-- env_desc.txt
23 | | | |-- task_desc.txt
24 | | |-- v2_Aggressive/
25 | | | |-- env_desc.txt
26 | | | |-- task_desc.txt
27 | | |-- ...
28 | |-- rl_only/
29 | |-- compute_reward.py
30 | |-- env_utils.py

Figure 13: SMAClite Mava files structures.
The tree above illustrates the structure of the project, showcasing all the necessary folders
and files required to run an experiment. For clarity and simplicity, a fictive experiment
is illustrated; however, in practice, there are additional experiment folders with specific
names, each corresponding to different experiment setups and configurations. Also for
clarity and simplicity the ePyMARL and Mava folder have not been expanded, for more
information about the structure of ePyMARL framework click here and Mava click here.

.3 Use of AI
An AI tool has been used as a spell checker to catch any remaining errors after writing.

https://github.com/uoe-agents/epymarl
https://github.com/instadeepai/Mava


UNIVERSITÉ CATHOLIQUE DE LOUVAIN 
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl




